
ibaPDA
Expression Builder

Manual Part 4
Issue 8.4

Measurement Systems for Industry and Energy
www.iba-ag.com

2

Manufacturer

iba AG

Koenigswarterstrasse 44

90762 Fuerth

Germany

Contacts

Main office +49 911 97282-0

Fax +49 911 97282-33

Support +49 911 97282-14

Engineering +49 911 97282-13

E-mail iba@iba-ag.com

Web www.iba-ag.com

Unless explicitly stated to the contrary, it is not permitted to pass on or copy this document, nor
to make use of its contents or disclose its contents. Infringements are liable for compensation.

© iba AG 2023, All rights reserved.

The content of this publication has been checked for compliance with the described hardware
and software. Nevertheless, discrepancies cannot be ruled out, and we do not provide guaran-
tee for complete conformity. However, the information furnished in this publication is updated
regularly. Required corrections are contained in the following regulations or can be downloaded
on the Internet.

The current version is available for download on our web site www.iba-ag.com.

Version Date Revision Author Version SW

8.4 08/2023 New diagnostic and miscellaneous functions rm 8.4.1

Windows® is a brand and registered trademark of Microsoft Corporation. Other product and
company names mentioned in this manual can be labels or registered trademarks of the corre-
sponding owners.

3 8.4 3

ibaPDA Contents

Contents

1	 About	this	documentation ..8

1.1 Target group and previous knowledge ... 8

1.2 Notations .. 8

1.3 Used symbols .. 9

1.4 Documentation structure ... 10

2 Expression builder (virtual signals) ..11

2.1 Encryption of certain text arguments ... 12

2.2 Logical functions ...12

2.2.1 Comparison functions >, >=, <, <=, <>, =... 12

2.2.2 Boolean functions ...12

2.2.3 Bitwise logical combinations .. 14

2.2.4 ExtendPulse .. 15

2.2.5 F_TRIG .. 16

2.2.6 FALSE .. 16

2.2.7 If .. 16

2.2.8 OneShot .. 17

2.2.9 R_TRIG .. 19

2.2.10 SetReset .. 20

2.2.11 Switch ... 22

2.2.12 TOF .. 23

2.2.13 Toggle ... 24

2.2.14 TON ... 25

2.2.15 TP .. 26

2.2.16 TRUE ... 26

2.3 Mathematical functions .. 27

2.3.1 Fundamental arithmetic operations +, -, *, / .. 27

2.3.2 Abs .. 28

2.3.3 Add ... 29

2.3.4 Ceiling ... 30

2.3.5 Diff .. 30

2.3.6 Eff .. 32

4 8.4

Contents ibaPDA

2.3.7 Exp .. 33

2.3.8 Floor.. 33

2.3.9 Int ... 34

2.3.10 Log .. 36

2.3.11 Log10 .. 37

2.3.12 Mod .. 37

2.3.13 Pow ... 38

2.3.14 Round ... 39

2.3.15 Sqrt ... 40

2.3.16 Truncate .. 41

2.4 Trigonometric functions ... 42

2.5 Statistical functions ...43

2.5.1 Avg .. 43

2.5.2 Avg2 .. 44

2.5.3 AvgInTime ... 45

2.5.4 KurtosisInTime ..46

2.5.5 MAvg ... 47

2.5.6 MAvgOnTrigger ...49

2.5.7 Max ... 51

2.5.8 Max2 ... 52

2.5.9 MaxInTime .. 53

2.5.10 Median2 ... 55

2.5.11 MedianInTime ..55

2.5.12 Min ... 57

2.5.13 Min2 ... 58

2.5.14 MinInTime .. 59

2.5.15 MKurtosis .. 61

2.5.16 MMax ... 61

2.5.17 MMedian .. 62

2.5.18 MMin .. 63

2.5.19 MSkewness ... 64

2.5.20 MStdDev ... 64

 8.4 5

ibaPDA Contents

2.5.21 SkewnessInTime ...65

2.5.22 StdDev .. 66

2.5.23 StdDev2 .. 67

2.5.24 StddevInTime ..67

2.6 Trigger functions ...69

2.6.1 Periodic trigger ...69

2.6.2 TriggerChangeRate..70

2.6.3 TriggerConstant ..71

2.6.4 TriggerEdge ...73

2.6.5 TriggerLevel...74

2.6.6 TriggerHarmonicLevel ...76

2.7 Text functions ...78

2.7.1 CharValue ... 78

2.7.2 CompareText ...79

2.7.3 ConcatText .. 81

2.7.4 ConvertFromText ..81

2.7.5 ConvertToText ...83

2.7.6 CountText .. 84

2.7.7 DeleteText ... 85

2.7.8 FindText .. 85

2.7.9 InsertText .. 87

2.7.10 MidText ... 88

2.7.11 ReplaceText ...89

2.7.12 TextLength .. 90

2.7.13 TrimText .. 91

2.8 Miscellaneous functions ... 92

2.8.1 ClientInfo .. 92

2.8.2 ClientInfoText ..93

2.8.3 Count .. 93

2.8.4 CountUpDown ..96

2.8.5 Delay ... 98

2.8.6 DelayLengthL ..99

6 8.4

Contents ibaPDA

2.8.7 DelayLengthV ..100

2.8.8 DWORD ...101

2.8.9 ElapsedTime ...102

2.8.10 ExecuteCommand ...103

2.8.11 GenerateSignal ...105

2.8.12 GenerateText ..107

2.8.13 GetFloatBit ..108

2.8.14 GetIntBit ...110

2.8.15 GetSignalMetaData ...111

2.8.16 GetSystemTime ...112

2.8.17 GetSystemTimeAsText .. 114

2.8.18 GetWeekOfYear ..116

2.8.19 LimitAlarm ..116

2.8.20 ModuleSignalCount ..118

2.8.21 PulseFreq ..119

2.8.22 RestartAcquisition ..119

2.8.23 SampleAndHold ..120

2.8.24 SampleOnce ..121

2.8.25 Sign ... 121

2.8.26 T .. 122

2.8.27 VarDelay ..123

2.8.28 WindowAlarm ...125

2.9 Diagnosis functions ...127

2.9.1 CameraStatus ..127

2.9.2 DataStoreInfo ..128

2.9.3 DataStoreInfoDB, ...Influx, ...Kafka, ...MindSphere, ...MQTT129

2.9.4 DataStoreInfoHD ...130

2.9.5 DongleInfo ..131

2.9.6 FobDLinkStatus ...132

2.9.7 FobFastLinkStatus ...132

2.9.8 FobFlexDeviceStatus ...133

2.9.9 FobFLinkStatus ..134

 8.4 7

ibaPDA Contents

2.9.10 FobMLinkStatus ..134

2.9.11 FobPlusControlLinkStatus ... 135

2.9.12 FobSDLinkStatus, FobSDexpLinkStatus ... 135

2.9.13 FobTDCLinkStatus, FobTDCexpLinkStatus ... 136

2.9.14 ICPSensorStatus ..137

2.9.15 InterruptCycleTime ...137

2.9.16 InterruptTime ...138

2.9.17 LicenseInfo ..139

2.9.18 MultiStationStatus ..140

2.9.19 PerformanceCounter .. 141

2.9.20 Ping ... 144

2.9.21 TimeSinceLastSync ..144

2.9.22 TimeSyncStatus ...145

2.10 Filter functions ..146

2.10.1 BP .. 146

2.10.2 HP ... 146

2.10.3 LP .. 147

2.10.4 EnvelopeSpectral ..149

2.10.5 Preprocess ..149

2.11 Retentive functions ...150

2.12 Plugins .. 150

3 Support and contact .. 151

88 8.4

About this documentation ibaPDA

1	 About	this	documentation
This documentation describes the function and application of the software

ibaPDA.

1.1 Target group and previous knowledge
This manual is aimed at qualified professionals who are familiar with handling electrical and
electronic modules as well as communication and measurement technology. A person is regard-
ed as professional if he/she is capable of assessing safety and recognizing possible consequenc-
es and risks on the basis of his/her specialist training, knowledge and experience and knowl-
edge of the standard regulations.

1.2	 Notations
In this manual, the following notations are used:

Action Notation
Menu command Menu Logic diagram
Calling the menu command Step 1 – Step 2 – Step 3 – Step x

Example:
Select the menu Logic diagram – Add – New function
block.

Keys <Key name>

Example: <Alt>; <F1>
Press the keys simultaneously <Key name> + <Key name>

Example: <Alt> + <Ctrl>
Buttons <Key name>

Example: <OK>; <Cancel>
Filenames, paths Filename, Path

Example: Test.docx

 8.4 9

ibaPDA About this documentation

1.3 Used symbols
If safety instructions or other notes are used in this manual, they mean:

Danger!

The	non-observance	of	this	safety	information	may	result	in	an	imminent	risk	
of death or severe injury:

■	 Observe the specified measures.

Warning!

The	non-observance	of	this	safety	information	may	result	in	a	potential	risk	of	
death or severe injury!

■	 Observe the specified measures.

Caution!

The	non-observance	of	this	safety	information	may	result	in	a	potential	risk	of	
injury or material damage!

■	 Observe the specified measures

Note

A note specifies special requirements or actions to be observed.

Tip

Tip or example as a helpful note or insider tip to make the work a little bit easier.

Other	documentation

Reference to additional documentation or further reading.

10 8.4

About this documentation ibaPDA

1.4	 Documentation	structure
This documentation fully describes the functionality of the ibaPDA system. It is designed both as
a tutorial as well as a reference document. The sections and chapters essentially follow the pro-
cedure for configuring the system.

In addition to this documentation, you can examine the version history in the main menu, Help
– Version history (file versions.htm) for the latest information about the installed version of
the program. This file not only lists the bugs that have been eliminated, but also refers to exten-
sions of the system in note form.

In addition, special "NewFeatures…" documentation comes with any software update that in-
cludes significant new features, which provides a more detailed description of the new features.

The state of the software to which the respective part of this documentation refers is listed in
the revision table on page 2.

The ibaPDA system documentation (PDF and printed version) is divided into seven separate
parts. Each part has its own section and page numbering beginning at 1, and is updated inde-
pendently.

Part 1 Introduction and installation General notes, license policy and add-ons

Installation and program start

User interface, system architecture, client server

User management, printing
Part 2 I/O Manager Basic information about the I/O Manager, general

settings

Groups and vector signals, text signals, outputs,
configuration files

Part 3 Data interfaces and mod-
ules

Interfaces for the measurement data acquisition

Standard interfaces, ibaFOB, Ethernet-based inter-
faces and more. For interfaces for which there are
separate manuals, these are referred to.

Part 4 Expression builder All functions for calculating virtual signals
Part 5 Data storage Types of data recording, recording profiles, signal

selection
Part 6 Data visualization All display modes for live data, their operation and

settings
Part 7 Appendix Various additions, error listings, etc.

11 8.4 11

ibaPDA Expression builder (virtual signals)

2 Expression builder (virtual signals)
With arithmetical and Boolean operations, you can create "virtual signals". These virtual signals
can be recorded like regular input signals and/or used for creating complex trigger conditions.
Using virtual signals, you can even calculate, e.g., sums, differences or check for limit violations
and much more during measurement. Or you create reference signals or characteristics for fur-
ther comparison in analysis.

Note

The datatype of the analog results of a computation in a virtual module is always
Float, no matter what the datatype of the input signals is, which are used in the
expression.

Note

In the expression builder and in all expressions and formulas the dot should be
used as decimal seperator!

Note

A note about the notation of the function parameters (arguments) in tooltips
and help texts:
If a value is assigned to an argument, this is the default value that is assumed if
the parameter is omitted. You can only omit parameters which have a default
value, e.g. GenerateSignal('Type', 'Amplitude=10', 'T1=1', 'T2=1').

In this case you may omit the arguments 2 (Amplitude), 3 (T1) and 4 (T2), if you
agree to use the default values. GenerateSignal (3,10,1,1) means GenerateSignal
(3).

However, a notation like GenerateSignal (3,,2,5) is not permitted. If one argu-
ment is omitted all following (optional) arguments should be omitted as well. No
gaps are allowed. But if following arguments are needed, the argument before
must get a value or expression too. In this example the correct notation would
be GenerateSignal (3,10,2,5).

Note

If you want to use double quotes in a static text, then you should write two dou-
ble quotes after each other.

12 8.4

Expression builder (virtual signals) ibaPDA

2.1	 Encryption	of	certain	text	arguments
When entering certain text arguments in expressions you can choose to encrypt the text in or-
der to prevent readability. This mainly applies to arguments like username and password, e.g. as
for the ExecuteCommand function.

When you start to type in an argument which is supported by the encryption feature, a pane
opens showing the command "Encrypt text". If you want to encrypt the text, then just click on
"Encrypt text". Another dialog will open with an entry field for the argument. Enter the argu-
ment and click on <OK>.

Instead of the readable text a generated string of characters with the prefix encrypted_ will
be entered as argument in the function.

2.2	 Logical	functions

2.2.1	 Comparison	functions	>,	>=,	<,	<=,	<>,	=

The comparative operations > (greater than), >= (greater than / equal to), < (smaller than), <=
(smaller than / equal to), <> (unequal) and = (equal) enable comparisons of the values of two
expressions (operands). The result of such an operation is the Boolean value TRUE or FALSE.
Original signals, calculated expressions or constant values can be entered as operands. The re-
sult can be presented and evaluated as a new expression, such as a signal. So, binary signals can
easily be generated and can then be used as conditions for other features.

Note.

If the crossing point of two charts is located between two measuring points, the
result of the comparative operation of the last two measured values is retained
until the next measuring point. I.e. that any change from TRUE to FALSE (or vice
versa) is always entered in the grid of the measuring points. The line which con-
nects two measuring points in the presentation of analog values is just a graphic
approximation.

2.2.2	 Boolean	functions
e.g. ('Expression1') AND ('Expression2')

AND Logical AND
OR Logical OR
XOR Logical exclusive OR
NOT Logical NOT, negation

 8.4 13

ibaPDA Expression builder (virtual signals)

Description
The Boolean functions AND (logical AND), OR (logical OR), NOT (logical NOT, negation) and XOR
(logical exclusive OR) can be used to connect binary expressions, such as digital signals. Accord-
ing to the rules of Boolean logic, the functions return the value TRUE or FALSE as their result.
Digital signals, calculated (binary) expressions or the numerical values 0 or 1 can be entered as
parameters.

The result can be presented and evaluated as a new expression, such as a signal. So, binary sig-
nals can easily be generated and can then be used as conditions for other features.

AND OR XOR NOT
A B f

(A,B)
A B f

(A,B)
A B f

(A,B)
A f (A)

0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 1 1 0 1 1 0
0 1 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1 0

Table 1: Logical functions, truth tables

Example
Graphical presentation of Boolean functions

Solution

14 8.4

Expression builder (virtual signals) ibaPDA

2.2.3	 Bitwise	logical	combinations
e.g. 'Expression1' bw_AND 'Expression2'

Overview

Operation Function
bw_AND Bitwise AND
bw_OR Bitwise OR
bw_XOR Bitwise XOR
bw_NOT Bitwise NOT

Description
The result of this function is the bitwise combination of two analog values. Preferably, this func-
tion is to be applied to datatypes like BYTE, WORD, INTEGER etc.

With floating point values (FLOAT), only the integer part will be considered, because the value is
converted internally into a 32 bit integer, not rounded.

Examples
By means of a combination of two decimal numbers the following table shows the result of the
operations.

Bitwise AND (bw_AND)
[Value A] bw_AND [Wert B]

Value A = 25 0 0 0 1 1 0 0 1
Value B = 14 0 0 0 0 1 1 1 0
Result bw_AND (decimal = 8) 0 0 0 0 1 0 0 0

Bitwise OR (bw_OR)
[Value A] bw_OR [Wert B]

Value A = 25 0 0 0 1 1 0 0 1
Value B = 14 0 0 0 0 1 1 1 0
Result bw_OR (decimal = 31) 0 0 0 1 1 1 1 1

Bitwise XOR (bw_XOR)

[Value A] bw_XOR [Wert B]

Value A = 25 0 0 0 1 1 0 0 1
Value B = 14 0 0 0 0 1 1 1 0
Result bw_XOR (decimal = 23) 0 0 0 1 0 1 1 1

 8.4 15

ibaPDA Expression builder (virtual signals)

Bitwise NOT (bw_NOT)
Returns the complement of the bits of a value.
bw_NOT([Value A])

Value A = 25 0 0 0 1 1 0 0 1
Result bw_NOT (decimal = -26) 1 1 1 0 0 1 1 0

2.2.4 ExtendPulse
ExtendPulse('Input','Time*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function extends a pulse on 'Input' to the minimum length of 'Time' seconds. A further ris-
ing edge on 'Input' restarts the time.

Example
Extending the pulses of a measured value to a minimum length of 0.3.

Solution
In the figure below the blue bar shows the measured value and the red bar shows the extended
pulses of the measured value.

Note

By switching the edges in the sampling grid, the graphic presentation and cal-
culation of the minimum length can be one sample above the minimum length
specified under 'Time'.

16 8.4

Expression builder (virtual signals) ibaPDA

2.2.5 F_TRIG
F_TRIG('Expression')

Arguments

'Expression' Digital input signal or expression

Description
This function returns the value TRUE for 1 sample, if the change from TRUE to FALSE has been
detected on ‘Expression’.

Specifically, falling edges can be detected and indicated by this function.

Example
Each time the signal of a temperature alert turns off, a signal shall be generated.

Solution
Generate a digital signal Temp_down by using the function F_TRIG, which only turns TRUE for a
short time, if there is a falling edge on the temperature alert signal Temperature_alert.

2.2.6 FALSE
FALSE()

Description
Returns the logical expression, FALSE or zero (0).

2.2.7 If
If('Condition','Expression1','Expression2')

Arguments

'Condition' Condition as an operation with the Boolean results, TRUE
or FALSE

'Expression1' Operation is performed if 'Condition' is TRUE
'Expression2' Operation is performed if 'Condition' is FALSE

Description
The If-function can be used for a conditioned execution of further calculations. Depending on
the Boolean result of a 'Condition’, which can itself be an operation, the operation ‘Expression1’
will be executed if the result is TRUE and the operation ‘Expression2’ if the result is FALSE.

 8.4 17

ibaPDA Expression builder (virtual signals)

In conclusion, different process-controlled calculations can be performed. You can use this func-
tion of course in an interlaced form to realize further branches. Text signals are supported.

Tip

If only one value is entered for 'Condition', as a condition it will be checked
whether the value is greater than (TRUE) or less than (FALSE) 0.5.

Note

Instead of "If" function you may use the "Switch" function. Moreover, the
"Switch" function offers the advantage to configure more than two cases.

Example
Detecting when a measurement signal is over a set limit

Solution
The limit is formulated in 'Condition' as a condition with logical operands. If 'Condition' is TRUE,
the value of 4 is returned, if FALSE then the value of 1.

In the figure below the condition is met above the dotted line (marked in green). Below the dot-
ted line the condition is not met.

2.2.8 OneShot
OneShot('Expression')

Description
This function returns the result TRUE, if the current measured value of 'Expression' is not equal
to the previous one. It returns the result FALSE, if the current measured value does equal the
previous one. The function supports text signals.

18 8.4

Expression builder (virtual signals) ibaPDA

Example 1
Detecting value changes

Task	description
For a real signal waveform, value changes should be displayed.

Solution
In the figure below the blue curve shows the original signal and the red bar shows the area with
value changes of the signal.

Example 2
Detecting edges

Task	description
The positive edges of a digital signal should be formed.

Solution
In the figure below the blue bar shows the original signal and the red bar shows the positive
edges.

 8.4 19

ibaPDA Expression builder (virtual signals)

2.2.9 R_TRIG
R_TRIG('Expression')

Arguments

'Expression' Digital input signal or expression

Description
This function returns the value TRUE for 1 sample, if the change from FALSE to TRUE has been
detected on ‘Expression’.

Specifically, rising edges can be detected and indicated by this function.

Example
Each time the signal of a temperature alert turns on, a signal shall be generated.

Solution
Generate a digital signal Temp_up by using the function R_TRIG, which only turns TRUE for a
short time, if there is a rising edge on the temperature alert signal Temperature_alert.

20 8.4

Expression builder (virtual signals) ibaPDA

2.2.10 SetReset
SetReset('Set','Reset','SetDominant=1*')

Arguments

'Set' Positive edge sets function to TRUE
'Reset' Positive edge sets function to FALSE
'Setdominant*' Optional parameter (default = 1), which controls which input argument is

dominant if both arguments simultaneously receive a positive edge.
'Setdominant' = 1 Set takes precedence over Reset
'Setdominant' = 0 Reset takes precedence over Set

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function can be used to control a digital result (TRUE/FALSE) with the help of positive edges
(transition from 0 to 1) of the arguments ‘Set’ and ‘Reset’.

A positive edge of ‘Set’ returns a static TRUE as result. A positive edge of ‘Reset’ resets the re-
sult to FALSE. The argument 'SetDominant' is optional and determines the dominance of ‘Set’ or
‘Reset’.

Tip

For an analog signal, exceeding the value 0.5 corresponds to a positive edge.

 8.4 21

ibaPDA Expression builder (virtual signals)

Example
This function can be used to enable conditional calculations with a signal and to disable them
with another signal (e.g. combined with IF function).

The figure below shows the function SetReset with digital and analog signals. For simultaneous
edges, the parameter determined under 'SetDominant' is set. For staggered edges, the 'Set-
Dominant' parameter has no effect.

22 8.4

Expression builder (virtual signals) ibaPDA

2.2.11 Switch
Switch('Selector', 'Case1', 'Value1', 'Case2', 'Value2',..., 'Default')

Arguments

'Selector' Expression, which is to be checked against different conditions
'CaseN' Expression, which is to be compared to ‘Selector’
'ValueN' Result, if ‘Selector’ and ‘CaseN’ match
'Default' Result, if none of the ‘CaseN’ matches ‘Selector’

Description
This command compares a ‘Selector’ expression to any number of ‘CaseN’, referring to the SQL
statement CASE. At least 3 arguments are required. In case of an even number of arguments the
last one will be considered automatically as ‘Default’, which will be taken if no ‘CaseN’ expres-
sion matches the ‘Selector’ expression.

If ‘Selector’ matches ‘CaseN’ the respective ‘ValueN’ will be returned as a result. If more than
one ‘CaseN’ match ‘Selector’, the first ‘CaseN’ expression will be taken automatically.

The following signals are permitted to be used as ‘Selector’:

■	 A numerical constant

■	 A text constant

■	 An equidistant or non-equidistant sampled channel

■	 A text channel

Basically, the types of the expressions to be compared must match, otherwise the respective
case will not be selected.

 8.4 23

ibaPDA Expression builder (virtual signals)

2.2.12 TOF
TOF('IN','PT*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
Off Delay Timer. The output is switched off 'PT' seconds after switching off the 'IN' input.

Example
Delaying switching off by one second

Solution
In the figure below the blue bar shows the measured value and the red bar shows the output
value with output delayed by one second.

24 8.4

Expression builder (virtual signals) ibaPDA

2.2.13 Toggle
Toggle('Trigger', 'Initial=0')

Arguments

'Trigger' Trigger signal (rising edge), which toggles the output
'Initial=0' Value at start of acquisition

If this argument is omitted, the start value is 0.

Description
This function toggles the output with each rising edge on ‘Trigger’. The last parameter ‘Initial’ is
optional and determines the value at start of acquisition.

Example
The rising edges of a temperature alert signal Temperature alert should switch a digital signal
NewRisingEdge on and off.

Solution

 8.4 25

ibaPDA Expression builder (virtual signals)

2.2.14 TON
TON('IN','PT*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
On Delay Timer. The output is switched on 'PT' seconds after switching on the 'IN' input.

Example
Delaying switching on by one second

Solution
In the figure below the blue bar shows the measured value and the red bar shows the input val-
ue with input delayed by one second.

26 8.4

Expression builder (virtual signals) ibaPDA

2.2.15 TP
TP('in','pt*')

Parameters ending with * are only evaluated once at the start of the acquisition..

Description
Pulse Timer. The output is switched on for 'PT' seconds after rising edge at the 'IN' input.

Tip.

Another rising edge during the output pulse does not extend the output pulse
and does not restart the pulse.

Example
Generating a 0.5 second pulse from a random signal

Solution
In the figure below the blue bar shows the measured value and the red bar shows the output
value in 0.5 second pulses.

2.2.16 TRUE
TRUE()

Description
Returns the logical expression, TRUE or 1.

 8.4 27

ibaPDA Expression builder (virtual signals)

2.3	 Mathematical	functions

2.3.1	 Fundamental	arithmetic	operations	+,	-,	*,	/
('Expression1')+ ('Expression2')

Description
All signals and expressions can be processed by fundamental arithmetic operations (addition,
subtraction, multiplication and division). If digital signals or expressions are used as operands in
fundamental arithmetic operations, the program translates the TRUE value as 1.0 and FALSE as
0.0. The result of a fundamental arithmetic operation is always an analog expression.

Example
Graphical presentation of fundamental arithmetic operations

Solution
The figure below shows the resulting charts for the different fundamental arithmetic opera-
tions.

Blue Measured value 1 Red Measured value 2
Green Addition Yellow Subtraction
Purple Multiplication Light

blue
Division

28 8.4

Expression builder (virtual signals) ibaPDA

2.3.2 Abs
Abs('Expression')

Description
The absolute function returns the absolute value (= |value|) of 'Expression.'

Example
Only the absolute value of the value from a measured signal is relevant

Solution
In the figure below the blue curve shows the original signal and the red curve is the absolute
value of the signal.

Tip

Interpolated values in the case of a change of sign between two samples may
differ in value.

 8.4 29

ibaPDA Expression builder (virtual signals)

2.3.3 Add
Add('Expression', 'Enable', 'Reset=0')

Arguments

'Expression' Analog input signal or expression
'Enable' Digital input signal or expression;

'Enable' = 1 enables the addition
'Reset' Optional parameter (default = 0) to stop and restart the calculation:

' Reset' = 0 Perform calculation
' Reset' = 1 Stop calculation and set result to 0

Description
This function adds the value of ‘Expression’ and its own actual value every cycle if ‘Enable’ =
TRUE or 1. If ‘Enable’ = FALSE or 0, the last actual value will be held. ‘Reset’ = TRUE or 1 resets
the actual value to 0.

Example
Each time a pushbutton is pressed, an analog value should be increased by 10 every cycle. With
a reset-pushbutton the value should be reset to 0.

Solution

30 8.4

Expression builder (virtual signals) ibaPDA

2.3.4 Ceiling
Ceiling('Expression')

Description
This function returns the smallest integer value that is greater than or equal to 'Expression’.

Example
Rounding up values of a signal waveform to whole numbers.

Task	description
From a real signal waveform, the measured value should be rounded up to the nearest integer
value for each sample.

Solution
In the figure below the blue curve shows the original signal and the red curve shows the signal
trend with rounded-up values.

2.3.5	 Diff
Diff('Expression')

Description
This function returns the differential dx/dt of 'Expression'.

Example
If 'Expression' is a length measuring signal, this diff-function can be used to determine a speed
curve.

Task	description
The speed curve should be determined from a length measuring signal and, from this, the accel-
eration curve.

 8.4 31

ibaPDA Expression builder (virtual signals)

Solution
Through repeated (iterative) performance of the diff-function using the values of the first as 'Ex-
pression' we obtain the curve of the acceleration.

In the figure below the blue curve shows the covered distance ("length"), the red curve shows
the calculated course of speed and the green curve shows the calculated course of acceleration.

Tip

If only the course of acceleration is of interest and speed is not relevant, this can
also be determined directly by recursively using the

Diff(Diff([0:0])) function.

32 8.4

Expression builder (virtual signals) ibaPDA

2.3.6	 Eff
Eff('Expression','Frequency')

Description
This function calculates the effective value of ‘Expression’ with a fundamental frequency of ‘Fre-
quency’.

The following formula is used to calculate the effective value:

Note

The result of the effective value function is always displayed in the subsequent
cycle of the fundamental frequency.

Example
For an alternating current course with a frequency of 0.1 kHz, which is overlaid by a second AC
voltage with 0.5 kHz, the effective value of the voltage should be determined for both frequen-
cies.

Solution
In the figure below the blue curve shows the AC current signal and the green curve shows the
effective voltage with calculation frequency 0.5 kHz. The red straight line shows the effective
voltage with calculation frequency 0.1 kHz.

 8.4 33

ibaPDA Expression builder (virtual signals)

2.3.7 Exp
Exp('Expression')

Description
This function calculates the result of (e) 'Expression'

Example
Graphical presentation of the exp-function

Solution
In the figure below the blue curve shows the time function and the red curve shows the expo-
nential function of time.

2.3.8 Floor
Floor('Expression')

Description
This function returns the largest integer value that is less than or equal to 'Expression’.

Example
Rounding down values of a signal waveform to whole numbers.

Task	description
From a real signal waveform, the measured value should be rounded down to the nearest inte-
ger value for each sample.

34 8.4

Expression builder (virtual signals) ibaPDA

Solution
In the figure below the blue curve shows the original signal and the red curve shows the signal
trend with rounded-down values.

2.3.9 Int
Int('Expression','Reset')

Arguments

'Expression' Measured value
'Reset' Optional digital parameter, which can be used to reset the integral or suppress

the integration process. ‘Reset’ can be an expression as well.
'Reset' > 0 Integral is reset.
'Reset' = 0 Integration released (default)

Description
This function returns the integral (y * dt) of 'Expression' as its result. The ‘Reset’ parameter can
be used for resetting the integral to zero or suppressing the integration process, e.g. to integrate
the same signal for periodical occurrences or reversing processes a number of times. ‘Reset’ can
be an expression as well.

Examples:

Int([0:0]) No reset happens ('Reset' omitted)
Int([0:0],If(Mod(T(),20)=0,TRUE(),FALSE())) The integral is reset every 20 seconds.
Int([0:0], [3.1]) e.g. with [3.1] = If([0:0]>10, 1, 0)

The integral is reset as soon as the expression
[3.1] returns TRUE, i.e. if the expression [0:0]
exceeds the limit value 10.

 8.4 35

ibaPDA Expression builder (virtual signals)

Example 1

Tip

This function can be used in a virtual retentive module. Its result values can thus
be obtained via stopping and restarting the measurement.

If 'Expression' is an acceleration signal, the distance covered can be determined by iteratively
performing the Int-function.

Task	description
The speed and distance covered should be determined with the help of an acceleration sensor.

Solution
In the figure below the blue curve shows the measured acceleration, the red curve shows the
calculated course of speed and the green curve shows the calculated distance covered.

Tip

If only the distance covered is of interest, this can also be determined by recur-
sively using the Int(Int([0:6])) function.

Example 2
The integral should be restarted at an interval of 20 seconds.

Task	description
The modulo function can be used to reset the integral since every 20 seconds T() mod 20 = 0
applies.

36 8.4

Expression builder (virtual signals) ibaPDA

Solution

Red Time function Blue Modulo20 of the time function
Green Measured value Yellow Integral of the measured value with

20 seconds reset

2.3.10 Log
Log('Expression')

Description
This function returns the natural logarithm (ln x) of 'Expression' as its result.

Example
Calculating a known natural logarithm.

Solution
Logarithm of Euler's number e must constantly give 1: ln e = 1

 8.4 37

ibaPDA Expression builder (virtual signals)

Tip

Although negative values for 'Expression' do not produce an error message, they
do not produce a result either.

2.3.11 Log10
Log10('Expression')

Description
This function returns the decadic logarithm (lg x) of 'Expression' as its result.

Example
Calculating known decadic logarithms.

Solution
lg 1 = Log10(1) = 0

lg 10 = Log10(10) = 1

Tip

Although negative values for 'Expression' do not produce an error message, they
do not produce a result either.

2.3.12 Mod
Mod('Expression1','Expression2')

Description
This function returns the modulo of 'Expression1' and 'Expression2' as its result. Internally, the
function uses the fmod C-function, which permits the use of floating-point values for 'Expres-
sion1' and 'Expression2'.

38 8.4

Expression builder (virtual signals) ibaPDA

Modulo r is the remainder of the division Expression1 / Expression2 so that the following rela-
tionship applies in the opposite direction:

Expression1 = Expression2 * i + r, where i is an integer number (integer).

Modulo r always has the same sign as 'Expression1' and the absolute value of r is always smaller
than the absolute value of 'Expression2'.

If Expression1' < 'Expression2', the function returns the value of 'Expression1' as its result.
Mathematically speaking, the modulo can also be described as "Expression1 modulo Expres-
sion2".

Examples: Mod(7, 3) = 1; seven divided by three equals two, remainder 1.

Mod(20.0, 10.5) = 9.5

Example
Only the seconds from the time function are relevant; hours and minutes should be cut off

Solution
With the help of Modulo60 of the time function, only the seconds are kept as the remainder.

In the figure below the blue curve shows the time function and the green curve shows Modu-
lo60 of the time function.

2.3.13 Pow
Pow('Expression1','Expression2')

Arguments

'Expression1' Basis
'Expression2' Exponent

 8.4 39

ibaPDA Expression builder (virtual signals)

Description
This function increases 'Expression1' (basis) to the power of 'Expression2' (exponent): ('Expres-
sion1')'Expression2'

Example
Calculating some important powers

Solution
(2)0 = Pow(2, 0) = 1

(2)-2 = Pow(2, -2) = 0.25

(-2)2 = Pow(-2, 2) = 4

(10)lg 2 = Pow(10, lg 2) = 2

(0)-1 = Pow(0, -1) = +∞ (infinity)

Tip

The exponentiation of 0 with -1, which is equivalent to a division by 0, does not
return an error message but the limit value +infinity.

2.3.14 Round
Round('Expression')

Description
This function rounds ‘Expression’ up or down to the nearest whole number (integer).

Example
Rounding values of a signal waveform to whole numbers

40 8.4

Expression builder (virtual signals) ibaPDA

Task	description
From a real signal waveform, the measured value should be rounded to the nearest integer val-
ue for each sample.

Solution
In the figure below the blue curve shows the original signal and the red curve shows the signal
trend with rounded values.

2.3.15 Sqrt
Sqrt('Expression')

Description
This function returns the square root of 'Expression' as its result.

Example
Calculating some known square roots

Solution
√(4) = Sqrt(4) = 2

√(2) = Sqrt(2) = 1.41421356…

√(-1) = Sqrt(-1) = i (complex calculation required)

Tip

Although negative values for 'Expression' do not produce an error message, they
do not produce a result either.

 8.4 41

ibaPDA Expression builder (virtual signals)

2.3.16 Truncate
Truncate('Expression')

Description
The truncate function truncates the decimal places of a floating point value. Negative numbers
are thus rounded up to the nearest integer value, positive numbers rounded down.

Example
Truncating the decimal places of the values of a signal waveform

Task	description
From a real signal waveform, the measured value should be displayed without decimal places
for each sample.

Solution
In the figure below the blue curve shows the original signal and the red curve shows the signal
trend with truncated decimal places.

42 8.4

Expression builder (virtual signals) ibaPDA

2.4	 Trigonometric	functions
Function('Expression')

Description
The standard functions and the corresponding inverse functions are available for the most var-
ied kinds of calculations in which trigonometric functions are needed, for example, the calcula-
tion of power in AC-systems.

Function Description
Sin('Expression') This function returns the result as the sine of 'Expression' in rad.
Cos('Expression') This function returns the result as the cosine of 'Expression' in rad.
Tan('Expression') This function returns the result as the tangent of 'Expression' in rad.
Asin('Expression') This function returns the result as the arcsine of 'Expression' in rad.
Acos('Expression') This function returns the result as the arccosine of 'Expression' in rad.
Atan('Expression') This function returns the result as the arctangent of 'Expression' in

rad.

Tip

In order to generate signales, the GenerateSignal function can be used.

Example
Presentation of trigonometric functions

Solution

 8.4 43

ibaPDA Expression builder (virtual signals)

Blue Time function T() as the basis for
trigonometric functions

Red Sine function of time

Green Cosine function of time Yellow tangent function of time

Pi()

Description
The number Pi () is stored as a constant (p = 3.1415927…) in the system for various kinds of cal-
culations. Use this function to insert the number pi into your calculation.

2.5	 Statistical	functions

2.5.1 Avg
Avg('Expression', 'Reset=0')

Arguments

'Expression' Measured value for the average is formed
'Reset' Optional parameter (default = 0) to stop and restart the calculation:

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to the instantaneous "Ex-

pression" value

Description
As a result, this function returns the average value of "Expression" since the measuring start-
ed or the last reset. The signal is written to the RAM of the computer. The arithmetic mean is
continuously calculated. If 'Reset' = 1 (TRUE), then the result equals the actual value of "Expres-
sion."

Note

The result of the Avg-function is only displayed in the subsequent interval.

44 8.4

Expression builder (virtual signals) ibaPDA

2.5.2 Avg2
Avg2('Expression1', 'Expression2', …)

Arguments

'Expression' Measured value, for which the average is formed

Description
This function returns the average value of all arguments 'Expression1', 'Expression2', 'Expres-
sion3' etc. The arithmetic average will be formed from the actual values of all arguments in ev-
ery acquisition cycle. Up to 1000 arguments are allowed.

Example
Evaluate the avarage value from two signals, a sine- and a sawtooth-shaped signal.

Solution

 8.4 45

ibaPDA Expression builder (virtual signals)

2.5.3 AvgInTime
AvgInTime('Expression','Interval',' Reset=0')

Arguments

'Expression' Measurement value for which the average is formed
'Interval' Specification of the length of the interval in seconds
'Reset' Optional parameter (default = 0) to stop and restart the calculation:

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to 0
'Reset' = 2 Stop calculation and keep result
'Reset' = 3 Calculate now and then stop calculation

Description
This function returns the average value per time segment of the 'interval' length of 'Expression'
as its result. The signal is written to the RAM of the computer. After an interval has passed, the
arithmetic average value over this interval is evaluated.

Tip

The result of the AvgInTime function is displayed only in the subsequent interval.

Example
Effects of the 'Reset' parameter

Task	description
The 'Reset' parameter should switch from 0 to 1, 2, or 3 in 5-second intervals in order to make
the effects of the parameter visible.

Solution
Three if-queries relay, via a modulo function of the time, the value 0 and the values 1, 2, 3 in
intervals of five seconds on the 'Reset' parameter of the AvgInTime function.

46 8.4

Expression builder (virtual signals) ibaPDA

Red Continuous calculation without 'Re-
set' indication

Green ('Reset' = 3) value is calculated be-
fore switching

Yellow ('Reset' = 2) value remains constant
during switching

Purple ('Reset' = 1) value = 0 during switch-
ing

2.5.4 KurtosisInTime
KurtosisInTime('Expression','Interval',' Reset=0')

Arguments

'Expression' Measured value, for which the kurtosis is formed
'Interval' Specification of the length of the interval in seconds, over which the kurtosis

should be calculated.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset'=0 Perform calculation
'Reset'=1 Stop calculation and set result to 0
'Reset'=2 Stop calculation and keep result
'Reset'=3 Calculate now and then stop calculation

Description
The calculation of the kurtosis is used, e.g. for the evaluation and analysis of oscillations. It
serves to determine the number of outliers within an oscillation signal.

In mathematical terms, the kurtosis is a measure for the relative "flatness" of a distribution
(compared to the normal distribution which has a kurtosis of zero). A positive kurtosis indicates

 8.4 47

ibaPDA Expression builder (virtual signals)

a tapering distribution (a leptokurtic distribution), whereas a negative kurtosis indicates a flat
distribution (platykurtic distribution).

This statistical method is particularly suitable for analyzing random or stochastic signals, e.g. in
terms of condition-based maintenance (Condition Monitoring) when analyzing oscillations. For
characterizing the signal curve, methods of probability density or frequency are used. It is as-
sumed that a noise signal with a Gaussian amplitude distribution can be measured in machines
in good order after filtering out, e.g., rotational frequency oscillation components. In the event
of damage, individual pulse signals interfere with this signal, altering the distribution function.
An evaluation of the system's condition can be carried out through the formation of suitable
statistical values, such as the crest factor or the kurtosis factor.

If regularly measured, these methods offer an overview of the machine status. However, the
disadvantage is that after they have increased, the characteristic values decrease again. The rea-
son for this is that the number of pulse signals increases with progressive damage. Whereas in
turn this has influence on the effective value but barely no effect on the peak value.

Modifications of the time signal caused by shock pulses induce a change in the resulting distri-
bution function. Distinctively discrete damage can cause an increase of the kurtosis factor. Its
absolute value thus allows statements on a damage.

2.5.5 MAvg
MAvg('Expression','WindowInterval',' UpdateInterval=timebase',' Reset=0')

Arguments

'Expression' Measured value, for which the average value is formed
'WindowInterval' Specification in seconds of the length of the interval over which the aver-

age is formed; must be a multiple of 'UpdateInterval'.
'UpdateInterval' Optional parameter (default = time base); specifies in which cycle the cal-

culation is performed.
'Reset' Optional parameter (default = 0) to stop and restart the calculation.

'Reset'=0 Perform calculation
'Reset'=1 Stop calculation and set result to 0
'Reset'=2 Stop calculation and keep result

Description
This function returns its result as the floating arithmetic mean value of 'Expression' calculated
over a ' WindowInterval' in seconds. The calculation is performed in the 'UpdateInterval' cycle.
'UpdateInterval' is an optional parameter and is expressed in seconds. If 'UpdateInterval' is not
specified then it is set equal to the time base (default), i.e. as small as possible. The calculation
is then carried out progressively by one sample in each case. The calculation can be carried out
in larger intervals if a (multiple) value of the time base is entered for 'UpdateInterval'.

'WindowInterval' determines the period for which the mean is calculated each time. 'Window-
Interval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is automatically
changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowInterval.'

48 8.4

Expression builder (virtual signals) ibaPDA

Tip

Using these functions, signals and expressions that are not time-based, i.e. which
have the basis length, frequency or 1/length, can also be processed. Instead of
seconds, the X-axis range should then be entered in m, Hz or 1/m corresponding
to the base.

Example
The mean values of the previous 2 and 20 seconds are relevant for a measured value.

Task	description
The MAvg function is used once with an interval time of 2 seconds and once with an interval
time of 20 seconds.

Solution
In the figure below the blue curve shows the measured value, the red curve shows the average
over an interval of 2 seconds, and the green curve shows the average over an interval of 20 sec-
onds

 8.4 49

ibaPDA Expression builder (virtual signals)

2.5.6 MAvgOnTrigger
MAvgOnTrigger('Expression', 'Trigger', 'NumberOfValues*', 'Reset=0')

Parameters ending with * are only evaluated once at the start of the acquisition..

Arguments

'Expression' Measured value, for which the average is formed
'Trigger' Digital signal or expression as a trigger for the execution of the command
'Number-
OfVlaues*'

Number of samples which are used for the calculation of the average;

Parameter will be evaluated at start of acquisition. Therefore, rather use a fix
value instead of an expression.

'Reset' Optional parameter (default = 0) to stop and restart the calculation.
'Reset' =0 Perform calculation
'Reset' =1 Stop calculation, delete all buffered data and set result

to 0
'Reset' =2 Stop calculation and keep result

Description
This function returns the moving arithmetic average of 'Expression', which is evaluated on every
rising edge of 'Trigger'. Only as many values as specified by 'NumberOfValues' are taken into ac-
count for the calculation. After start of acquisition or after a reset with 'Reset' = 1, 'Trigger' has
to be fired 'NumberOfValues' times before the first average value can be calculated. With each
other trigger the average for the last 'NumberOfValues' triggered samples is calculated.

This makes it possible to calculate moving averages controlled by events. The calculation then
can be performed e. g. per revolution of a machine or per produced part instead only linear
over time.

50 8.4

Expression builder (virtual signals) ibaPDA

Example
Apply MAvgOnTrigger on a triangular signal

For explanatory reasons only 'NumberOfValues' = 5 has been specified in the example.

Not until the 5th trigger after start of acquisition a first average value (red 1.) is calculated from
the 5 selected samples (blue dots). The distance between the trigger events does not matter.
The small and even distance between the first 5 triggers is due to graphical reasons.

With each other trigger the new actual and the last 4 samples are taken into account for the
calculation, returning the respective average values (green 2., 3., 4., 5. etc.)

 8.4 51

ibaPDA Expression builder (virtual signals)

2.5.7 Max
Max('Expression',' Reset=0')

Arguments

'Expression' Signal, for which the maximum value should be determined
'Reset’ Optional digital parameter that can be used to reset the maximum, e.g., in order

to ignore the leveling-off processes of the measuring signal during the start-up
phase. ‘Reset’ can be an expression as well.
'Reset' = TRUE Stop calculation and set result to the instantaneous "Ex-

pression" value
'Reset' = 0 Perform calculation; most recently detected maximum is

displayed. (Default)

Description
This function returns the maximum value of 'Expression' as its result. It is displayed as a con-
stant value (horizontal line) in the signal strip. Each value is compared to the previous one. If the
new value is higher than the previous one, the higher value will be incorporated into the curve.
If the new value is equal or lower than the previous one, the previous value will be included.
With the digital 'Reset' signal, the maximum value calculation can be stopped and the result can
be reset to the current value of the input signal. Without the reset signal there is no way to re-
set the display unless the measurement is stopped and restarted. 'Reset' can also be formulated
as an expression.

Examples:

Max([0:0]) No reset takes place.
Max([0:0],If(Mod(T(),20)=0,TRUE(),FALSE())) The maximum value is reset every 20 sec-

onds.
Max([0:0],[3.1]) e.g. with [3.1] = If([0:0]<10, 1, 0)

The maximum value is reset as soon as the
expression [3.1] returns TRUE, i.e., if the
expression [0:0] falls below the limit value
of 10.

Example

Tip

This function can be used in a virtual retentive module. Its result values can thus
be obtained despite stopping and restarting the measurement.

The maximum should be determined for a signal. The start phase should be ignored in the cal-
culation.

52 8.4

Expression builder (virtual signals) ibaPDA

Task	description
In order to remove fluctuations during the start phase, the maximum value is reset using the
'reset' function. This can be done using the TriggerConstant function, which waits for the level-
ing off of the signal. The setting of the 'reset' parameter is done via the edge detection ('One-
Shot') of the trigger.

Note

The 'Reset' parameter should not be permanently set to TRUE because the maxi-
mum value would then be reset permanently and thus correspond to the signal.

Solution

Blue Measured value Red Falsified maximum value without
'Reset'

Green Maximum value with reset after
start phase

Yellow One-shot function for triggering the
'Reset'

Purple Trigger after the start phase

2.5.8 Max2
Max2('Expression1','Expression2', …)

Description
This function returns the maximum of all expressions, 'Expression1', 'Expression2', etc. as its
result. The expressions or signals are compared measured value by measured value, with the
largest value in each case being presented as the result. Up to 1000 arguments are permitted.

 8.4 53

ibaPDA Expression builder (virtual signals)

Example
Only the larger value of the two measured values is relevant.

Solution
In the figure below the blue curve shows the measured value 1, the red curve shows the mea-
sured value 2, and the green cure shows the course of the maximum values.

2.5.9 MaxInTime
MaxInTime('Expression','Interval',' Reset=0')

Arguments

'Expression' Measured value, for which the maximum is formed
'Interval' Specification of the interval length in seconds, over which the maximum should

be calculated.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset’ =0 Perform calculation
'Reset'=1 Stop calculation and set result to 0
'Reset'=2 Stop calculation and keep result
'Reset'=3 Calculate now and then stop calculation

Description
This function returns the maximum value of 'Expression' within each interval of the 'interval'
length (in seconds) as its result.

54 8.4

Expression builder (virtual signals) ibaPDA

Note

The result of the MaxInTime function is displayed only in the subsequent inter-
val.

Example
Effects of the 'Reset' parameter

Task	description
The 'Reset' parameter should switch from 0 to 1, 2, or 3 in 5-second intervals in order to make
the effects of the parameter visible.

Solution
Three If-queries relay, via a modulo function of the time, the value 0 and the values 1, 2, 3 in
intervals of 5 seconds on the 'Reset' parameter of the MaxInTime function.

Blue Measured value Yellow Continuous calculation without 'Re-
set' application

Red ('Reset' = 3) value is calculated be-
fore interruption, even within an
interval (1)

Green ('Reset'= 2) value remains constant
during interruption

Purple ('Reset' = 1) value=0 during interrup-
tion, even within an interval (1)

 8.4 55

ibaPDA Expression builder (virtual signals)

2.5.10 Median2
Median2('Expression1', 'Expression2', …)

Arguments

'Expression' Measured value(s), for which the median value is formed

Description
This function returns the median value of all arguments Every cycle, the actual values of all ar-
guments are added and the sum is divided by two.

Example
The median of a constant and a periodic value should be formed.

Solution

The example shows a median of 132.5 ((10 + 255)/2) at the peak of the curve.

2.5.11 MedianInTime
MedianInTime('Expression', 'Interval', ' Reset=0')

Arguments

'Expression' Measured value, for which the median is formed
'Interval' Specification of the length of the interval in seconds
'Reset’ Optional parameter (default = 0) to stop and restart the calculation:

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to 0
'Reset' = 2 Stop calculation, delete all buffered data and keep result
'Reset' = 3 Calculate now and then stop calculation

56 8.4

Expression builder (virtual signals) ibaPDA

Description
This function returns the median value per time segment of the 'interval' length of 'Expression'
as its result. The signal is written to the RAM of the computer. After an interval has passed, the
median value over this interval is evaluated.

Tip

The result of the MedianInTime function is displayed only in the subsequent in-
terval.

Example
The following figure shows the calculation of the MedianInTime (blue) of a signal (red) and the
impact of the parameter ‘Reset’ (green).

 8.4 57

ibaPDA Expression builder (virtual signals)

2.5.12 Min
Min('Expression',' Reset=0')

Arguments

'Expression' Signal, for which the minimum value should be determined
'Reset' Optional digital parameter that can be used to reset the minimum, e.g., in order

to ignore the leveling-off processes of the measuring signal during the start-up
phase. ‘Reset’ can be an expression as well.
'Reset' = TRUE Stop calculation and set result to the instantaneous "Ex-

pression" value
'Reset' = 0 Perform calculation; most recently detected minimum is

displayed. (Default)

Description
This function returns the minimum value of the 'Expression' signal as its result. It is displayed
as a constant value (horizontal line) in the signal strip. Each value is compared to the previous
one. If the new value is lower than the previous one, the lower value will be incorporated into
the curve. If the new value is equal or higher than the previous one, the previous value will be
included. With the digital 'Reset' signal, the minimum value calculation can be stopped and the
result can be reset to the current value of the input signal. Without the Reset signal there is no
way to reset the display unless the measurement is stopped and restarted. . 'Reset' can also be
formulated as an expression.

Examples:

Min([0:0]) No reset takes place.
Min([0:0],If(Mod(T(),20)=0,TRUE(),FALSE())) The minimum value is reset every 20 seconds.
Min([0:0],[3.1]) e.g. with [3.1] = If([0:0]<10, 1, 0)

The minimum value is reset as soon as the
expression [3.1] returns TRUE, i.e. if the ex-
pression [0:0] falls below the limit value 10.

Example

Tip

This function can be used in a virtual retentive module. Its result values can thus
be obtained via stopping and restarting the measurement.

The minimum should be determined for a signal. The start phase should be ignored in the calcu-
lation.

58 8.4

Expression builder (virtual signals) ibaPDA

Task	description
In order to remove fluctuations during the start phase, the minimum value is reset using the
'reset' function. This can be done via the TriggerConstant function, which waits for the leveling
off of the signal. The setting of the 'reset' parameter is done via the edge detection ('OneShot')
of the trigger.

Note

The 'reset' parameter should not be permanently set to TRUE because the mini-
mum value would then be reset permanently and thus correspond to the signal.

Solution

Blue Measured value Red falsified minimum value without
'Reset'

Green Minimum value with reset after start
phase

Yellow One-shot function for triggering the
'Reset'

Purple Trigger after the start phase

2.5.13 Min2
Min2('Expression1','Expression2')

Description
This function returns the minimum of all expressions, 'Expression1', 'Expression2', etc. as its re-
sult. The expressions or signals are compared measured value by measured value, with the larg-
est value in each case being presented as the result. Up to 1000 arguments are permitted.

 8.4 59

ibaPDA Expression builder (virtual signals)

Example
Only the smaller value of the two measured values is relevant.

Solution
In the figure below the blue curve shows the measured value 1, the red curve shows the mea-
sured value 2, and the green cure shows the course of the minimum values.

2.5.14 MinInTime
MinInTime('Expression','Interval',' Reset=0')

Arguments

'Expression' Measured value, for which the minimum is formed
'Interval' Specification of the length of the interval in seconds, over which the minimum

should be calculated.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset'=0 Perform calculation
'Reset'=1 Stop calculation and set result to 0
'Reset'=2 Stop calculation and keep result
'Reset'=3 Calculate now and then stop calculation

Description
This function returns the minimum value of 'Expression' within each interval of the 'Interval'
length (in seconds) as its result.

60 8.4

Expression builder (virtual signals) ibaPDA

Note

The result of the MinInTime function is displayed only in the subsequent interval.

Example
Effects of the 'Reset' parameter

Task	description
The 'Reset' parameter should switch from 0 to 1, 2, or 3 in 5-second intervals in order to make
the effects of the parameter visible.

Solution
Three If-queries relay, via a modulo function of the time, the value 0 and the values 1, 2, 3 in
intervals of 5 seconds on the 'Reset' parameter of the MinInTime function.

Blue Measured value Yellow Continuous calculation without 'Re-
set' application

Red ('Reset' = 3) value is calculated be-
fore interruption, even within an
interval (1)

Green ('Reset'= 2) value remains constant
during interruption

Purple ('Reset' = 1) value=0 during interrup-
tion, even within an interval (1)

 8.4 61

ibaPDA Expression builder (virtual signals)

2.5.15 MKurtosis
MKurtosis('Expression','WindowInterval', 'UpdateInterval=timebase', 'Reset=0')

Arguments

'Expression' Measured value, for which the kurtosis is formed
'WindowInter-
val'

Specification in seconds of the length of the interval over which the kurtosis
is formed; must be a multiple of 'UpdateInterval'.

'UpdateInter-
val'

Optional parameter (default = time base); specifies in which cycle the calcu-
lation is performed.

'Reset' Optional parameter (default = 0) to stop and restart the calculation.
'Reset'=0 Perform calculation
'Reset'=1 Stop calculation and set result to 0
'Reset'=2 Stop calculation and keep result

Description
Returns the kurtosis value of 'Expression' every 'UpdateInterval' seconds based on a floating
window of 'WindowInterval' seconds.

The 'UpdateInterval' parameter is optional. If not specified then it is set equal to the time base
of the function (i.e. as small as possible).

'WindowInterval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is auto-
matically changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowIn-
terval.'

For more information about Kurtosis, see Chapter ì KurtosisInTime, page 46

2.5.16 MMax
MMax('Expression','WindowInterval', 'UpdateInterval=timebase', 'Reset=0')

Arguments

'Expression' Measured value, for which the maximum is formed
'WindowInterval' Specification in seconds of the interval length over which the maximum

should be calculated; must be a multiple of 'UpdateInterval'.
'UpdateInterval' Optional parameter (default = time base); specifies in which cycle the cal-

culation is performed.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset'=0 Perform calculation
'Reset'=1 Stop calculation, reset and set result to 0
'Reset'=2 Stop calculation and keep result

Description
This function returns the maximum of 'Expression' every 'UpdateInterval' seconds based on a
floating window of 'WindowInterval' seconds.

62 8.4

Expression builder (virtual signals) ibaPDA

The 'UpdateInterval' parameter is optional. If not specified then it is set equal to the time base
of the function (i.e. as small as possible).

'WindowInterval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is auto-
matically changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowIn-
terval.'

2.5.17 MMedian
MMedian('Expression', 'WindowInterval', 'UpdateInterval=timebase', ' Reset=0')

Arguments

'Expression' Measured value, for which the median is formed
'WindowInterval' Specification in seconds of the interval length over which the median

should be calculated; must be a multiple of 'UpdateInterval'.
'UpdateInterval' Optional parameter (default = time base); specifies in which cycle the cal-

culation is performed.
'Reset’ Optional parameter (default = 0) to stop and restart the calculation:

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation, delete all buffered data and set result to 0
'Reset' = 2 Stop calculation, delete all buffered data and keep result

Description
This function returns the median of 'Expression' every 'UpdateInterval' seconds based on a
floating window of 'WindowInterval' seconds.

The 'UpdateInterval' parameter is optional. If not specified then it is set equal to the time base
of the function (i.e. as small as possible).

'WindowInterval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is auto-
matically changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowIn-
terval.'

'WindowInterval' and 'UpdateInterval' can be determined by expressions. Changes of these in-
terval values are applied not until a reset.

Tip

The result of the MMedian function is displayed only in the subsequent interval.

 8.4 63

ibaPDA Expression builder (virtual signals)

2.5.18 MMin
MMin('Expression','WindowInterval', 'UpdateInterval=timebase', 'Reset=0')

Arguments

'Expression' Measured value, for which the minimum is formed
'WindowInterval' Specification in seconds of the interval length over which the minimum

should be calculated; must be a multiple of 'UpdateInterval'.
'UpdateInterval' Optional parameter (default = time base); specifies in which cycle the cal-

culation is performed.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset'=0 Perform calculation
'Reset'=1 Stop calculation, reset and set result to 0
'Reset'=2 Stop calculation and keep result

Description
This function returns the minimum of 'Expression' every 'UpdateInterval' seconds based on a
floating window of 'WindowInterval' seconds.

The 'UpdateInterval' parameter is optional. If not specified then it is set equal to the time base
of the function (i.e. as small as possible).

'WindowInterval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is auto-
matically changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowIn-
terval.'

64 8.4

Expression builder (virtual signals) ibaPDA

2.5.19 MSkewness
MSkewness('Expression','WindowInterval', 'UpdateInterval=timebase', 'Reset=0')

Arguments

'Expression' Measured value, for which the skewness is formed
'WindowInter-
val'

Specification in seconds of the interval length over which the skewness
should be calculated; must be a multiple of 'UpdateInterval'.

'UpdateInter-
val'

Optional parameter (default = time base); specifies in which cycle the calcu-
lation is performed.

'Reset' Optional parameter (default = 0) to stop and restart the calculation.
'Reset'=0 Perform calculation
'Reset'=1 Stop calculation and set result to 0
'Reset'=2 Stop calculation and keep result

Description
Returns the skewness value of 'Expression' every 'UpdateInterval' seconds based on a floating
window of 'WindowInterval' seconds.

The 'UpdateInterval' parameter is optional. If not specified then it is set equal to the time base
of the function (i.e. as small as possible).

'WindowInterval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is auto-
matically changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowIn-
terval.'

For more information about skewness, see Chapter ì SkewnessInTime, page 65

2.5.20 MStdDev
MStdDev('Expression', 'WindowInterval', 'UpdateInterval=timebase', ' Reset=0')

Arguments

'Expression' Measured value, for which the standard deviation is formed
'WindowInterval' Specification in seconds of the interval length over which the median

should be calculated; must be a multiple of 'UpdateInterval'.
'UpdateInterval' Optional parameter (default = time base); specifies in which cycle the cal-

culation is performed.
'Reset’ Optional parameter (default = 0) to stop and restart the calculation:

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation, delete all buffered data and set result to 0
'Reset' = 2 Stop calculation, delete all buffered data and keep result

Description
This function returns the the standard deviation 'Expression' every 'UpdateInterval' seconds
based on a floating window of 'WindowInterval' seconds.

 8.4 65

ibaPDA Expression builder (virtual signals)

The 'UpdateInterval' parameter is optional. If not specified then it is set equal to the time base
of the function (i.e. as small as possible).

'WindowInterval' must be a multiple of 'UpdateInterval'. Otherwise, 'WindowInterval' is auto-
matically changed to the first multiple of 'UpdateInterval' greater than or equal to 'WindowIn-
terval.'

'WindowInterval' and 'UpdateInterval' can be determined by expressions. Changes of these in-
terval values are applied not until a reset.

Tip

The result of the MStdDev function is displayed only in the subsequent interval.

2.5.21 SkewnessInTime
SkewnessInTime('Expression','Interval','Reset=0')

Arguments

'Expression' Measured value, for which the skewness is formed
'Interval' Specification of the interval length in seconds, over which the skewness should

be calculated.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to 0
'Reset' = 2 Stop calculation and keep result
'Reset' = 3 Calculate now and then stop calculation

Description
Like the kurtosis factor, the skewness factor can be used for evaluating and analyzing oscilla-
tions. The skewness factor can be used if the symmetrical properties of an oscillation signal are
to be checked (e.g. acceleration signal).

With this function, the selected expression is divided into equal-duration intervals of size 'Inter-
val'. For these intervals, the skewness is subsequently calculated.

In mathematical terms, this is the evaluation of the skewness of a distribution function. A distri-
bution is called right-skewed (or positively-skewed) when the majority of the distribution is con-
centrated on the left side. A distribution is called left-skewed (or negatively-skewed) when the
majority of the distribution is concentrated on the right. The skewness level is defined by the
third order of the central moment of the distribution.

The procedure to calculate the skewness is similar to that of the KurtosisInTime function.

66 8.4

Expression builder (virtual signals) ibaPDA

2.5.22 StdDev
StdDev('Expression', 'Reset=0')

Arguments

'Expression' Signal, for which the standard deviation should be determined
'Reset' Optional parameter (default = 0) to stop and restart the

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to 0

Description
This function returns the standard deviation of 'Expression' as its result. If 'Reset' is TRUE the
result is reset to 0.

Example

 8.4 67

ibaPDA Expression builder (virtual signals)

2.5.23 StdDev2
StdDev2('Expression1', 'Expression2', …)

Arguments

'Expression' Measured value(s), for which the standard deviation is formed

Description
This function returns the standard deviation of all arguments

Example
Standard deviation of a constant and a variable value

2.5.24 StddevInTime
StddevInTime('Expression','Interval',' Reset=0')

Arguments

'Expression' Measured value, for which the standard deviation is formed
'Interval' Specification of the length of the interval in seconds, over which the standard

deviation should be calculated.
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to 0
'Reset' = 2 Stop calculation and keep result
'Reset' = 3 Calculate now and then stop calculation

Description
This function returns the standard deviation of 'Expression' over each time interval of the length
'Interval' as its result. The calculation can be stopped using the optional parameter, 'Reset.'

68 8.4

Expression builder (virtual signals) ibaPDA

The standard deviation is calculated by the following formula:

Example
For a signal waveform, the standard deviation should be determined in time intervals of one
second. A reset is not necessary.

Solution
In the figure below the blue curve shows the measured values and the red curve shows the
standard deviation in the intervals of length of one second.

Note

The result of the StdDevInTime function is always displayed in the subsequent
interval.

 8.4 69

ibaPDA Expression builder (virtual signals)

2.6	 Trigger	functions

2.6.1 Periodic trigger
PeriodicTrigger('Interval*','StartTime*','UseSystemTime*')

Arguments

'Interval*' Interval in minutes, in which the value TRUE is returned
'StartTime*' Specification in minutes; produces the start time ('StartTime' modulo 'In-

terval') after using the modulo function
'UseSystemTime*' Determines whether the system time or internal high-resolution timer is

used.
'UseSystemTime = 0 No system time but internal timer is used.
'UseSystemTime' > 0 System time is used.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the value TRUE every ‘Interval’ minutes, starting at ‘StartTime’ modulo 'In-
terval' minutes. The ‘UseSystemTime’ flag determines whether the system time or the internal
high-resolution timer is to be used.

Example
Displaying a trigger every 10 seconds

Solution
Display of the following functions:

 � PeriodicTrigger(10/60, 10/60, 1)

 � PeriodicTrigger(10/60, 11/60, 1)

 � PeriodicTrigger(10/60, 15/60, 1)

with 10/60 min (corresponds to 10 s) for 'Interval,' again 10/60 min or 11/60 min (11 s) and
15/60 min (15 s) for 'StartTime' and 1 (system time) for 'UseSystemTime.'

As the following illustration shows, the triggers every 10 s differ in their start time. According
to the calculation method, the trigger starts the interval of the red chart at time 0 s, the green
chart at 1 s and the blue chart at 5 s after the acquisition.

70 8.4

Expression builder (virtual signals) ibaPDA

Note

Negative values for 'StartTime' are invalid and result in an error message.

2.6.2 TriggerChangeRate
TriggerChangeRate('Expression','DeltaY*','DeltaT*','DeadTime*')

Arguments

'Expression' Measured value
'DeltaY*' Required value distance for releasing the trigger
'DeltaT*' Time interval considered; limit value = 1,000,000 × module timebase
'DeadTime*' Time specification in seconds, for which the trigger condition must be ful-

filled until release. If no delay is desired, the value 0 must be entered.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The function returns TRUE as long as the change of the measured value 'Expression' (dy) within
the interval 'DeltaT' is greater than 'DeltaY'.

Note

The function compares the distance of the values with the time difference be-
tween DeltaT and DeltaY; the slope of the curve can also vary between the val-
ues. The time difference to be considered DeltaT is limited to 1-millionfold the
module timebase.

 8.4 71

ibaPDA Expression builder (virtual signals)

Example
Differences in trigger initiation and impact of the 'DeadTime'

Solution

Red Measured value Blue Trigger release with ∆Y=1 and ∆T=1
Yellow Trigger release with ∆Y=1 and ∆T=1 Purple Trigger release with ∆Y=2 and ∆T=2

2.6.3 TriggerConstant
TriggerConstant('Expression','Level*','Epsilon*','DeadTime*')

Arguments

'Expression' Measured value
'Level*' Value specifying the center line of the area in which the trigger should re-

lease
'Epsilon*' Value specifying the distance of both area boundaries for the center line
'DeadTime*' Time specification in seconds, for which the trigger condition must be ful-

filled until release. If no delay is desired, the value 0 must be entered.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The function returns TRUE as long as 'Expression' remains within the area ['Level' - 'Epsilon',
'Level' + 'Epsilon'] for at least the duration of the 'DeadTime'.

Note

In contrast to the TriggerEdge and TriggerLevel functions, the trigger signal is
emitted for the entire duration for which the level is exceeded or undershot rath-
er than as a single pulse.

72 8.4

Expression builder (virtual signals) ibaPDA

Example
The trigger should be released if the measured value is longer than one second in a range be-
tween 0.5 and 1.5.

Solution
In the figure below the blue curve shows the original signal and the red bar shows the released
trigger.

 8.4 73

ibaPDA Expression builder (virtual signals)

2.6.4 TriggerEdge
TriggerEdge('Expression','Level*','EdgeType*','DeadTime*')

Arguments

'Expression' Measured value
'Level*' Specification of the level value
'EdgeType*' Specification of whether rising, fall-

ing or both edges, i.e. crossings of
the level value are counted
'EdgeType' < 0 only falling edges (crossing in the

negative direction)
'EdgeType' > 0 only rising edges (crossing in the

positive direction)
'EdgeType' = 0 falling and rising edges

'DeadTime*' Time specified in seconds for which
the measured value must exceed or
fall below the level value in order to
release the trigger.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
Triggers if 'Expression' exceeds or falls below 'Level' and stays on the same 'Level' side for at
least DeadTime' seconds. If 'Expression' is a digital signal, 'Level' is fixed at 0.5. 'EdgeType' deter-
mines which edges or crossing are counted:

Note

Unlike the TriggerLevel and TriggerConstant functions, only a pulse is emitted
when the level value is crossed.

Example
A trigger should be released in each case where the measured value is above 1.5 or below -0.5
for 0.5 seconds.

Solution
In the figure below the blue curve shows the measured value and the red bar shows the trigger
if measured value is longer than 0.5 seconds above 1.5. The green bar shows the trigger if mea-
sured value is longer than 0.5 seconds below -0.5.

74 8.4

Expression builder (virtual signals) ibaPDA

2.6.5 TriggerLevel
TriggerLevel('Expression','Level*','LevelType*','DeadTime*')

Arguments

'Expression' Measured value
'Level*' Specification of the level value
'LevelType*' Specification of which side of 'Level'

is considered
'LevelType' =0 below level
'LevelType' = 1 above level

'DeadTime*' Time specified in seconds for which
the measured value must remain on
the side considered of the level val-
ue in order to initiate the trigger.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
Triggers when 'Expression' remains above or below 'Level' for at least 'DeadTime' seconds. 'Lev-
elType' determines which 'level' side is monitored.

Note

In contrast to the TriggerEdge and TriggerConstant functions, trigger pulses are
periodically emitted in 'DeadTime' intervals over the period of the exceeding or
undershooting.

 8.4 75

ibaPDA Expression builder (virtual signals)

Example
A trigger should be released in each case where the measured value is above 0.8 and below -0.2
for 0.4 seconds. A trigger pulse should be emitted periodically for the entire duration of the ex-
ceeding or undershooting.

Solution
In the figure below the blue curve shows the measured value and the red bar shows the trigger
every 0.4 seconds while the measured value is above 0.8. The green bar shows the trigger every
0.4 seconds during which the measured value is below -0.2.

76 8.4

Expression builder (virtual signals) ibaPDA

2.6.6 TriggerHarmonicLevel
TriggerHarmonicLevel('Expression',"'LimitProfile*'",'Harmonic*')

Arguments

'Expression' Measuring signal
"'LimitProfile*'" Name of the limit profile defined in the PQU
'Harmonic*' Order (harmonic), the limit value of which is to be monitored, values 0 to 50

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
Trigger fires (result true) when the signal value is above the harmonic limit defined in the "Lim-
itProfile" profile of PQU. The "Harmonic" parameter determines which limit value is used from
the limit profile.

Example
When measured on medium voltage switchgear, the U12 conductor voltage should be moni-
tored for its harmonic content. A trigger signal should be triggered if the limit value specified in
EN50160 for the third harmonic in a 10 minute interval is exceeded.

The limit profile is configured in the I/O Manager in the spectrum modules. The profile name is
"EN50160 – Medium voltage – Harmonics".

The limit values can be viewed with Configure profiles. In our example, the limit for the third
harmonic is 5 %.

 8.4 77

ibaPDA Expression builder (virtual signals)

Solution

Fig. 1: Configuration of the TriggerHarmonicLevel expression

The trigger fires if the 10 min value of the third harmonic of U12 is above 5 %.

78 8.4

Expression builder (virtual signals) ibaPDA

2.7	 Text	functions

2.7.1 CharValue
CharValue('Text', 'CharNumber=0')

Arguments

'Text' Text signal
'CharNumber' Position of the character in the text, default = 0

Description
This function returns the ASCII decimal value of the character at the 'CharNumber' position in a
text. The default provides the first character (position = 0).

Example: If 'text' has the value "A_text for test", then the result of CharValue('Text', 0) is the AS-
CII value 65 for the uppercase A.

Example
Presenting the example referred to in the description

Solution
Query of the ASCII decimal value of the first character in the text "A_Text for test". A has the
value 65 in the ASCII table.

Tip

See ASCII table under http://www.ascii-code.com/.

http://www.ascii-code.com/

 8.4 79

ibaPDA Expression builder (virtual signals)

2.7.2 CompareText
CompareText("'Text1'", "'Text2'", ' CaseSensitive=1*')

Comment:
The original name of this function was TextCompare. It was later renamed as CompareText. For
compatibility reasons, the TextCompare function can still be used. The arguments are identical.

Arguments

'Text1' Specification of the first comparison text
'Text2' Specification of the second comparison text
'CaseSensitive*' Optional parameter (default = 1) for determining whether a case sensitive

comparison (consideration of upper and lower case) should be made
'CaseSensitive' = 1 Take upper and lower case into account
'CaseSensitive' <> 1 Ignore upper and lower case

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function compares 2 texts alphabetically. This means that the characters of the 2 strings
are compared individually starting with the left character. The function uses the current culture
setting (Windows) to obtain culture-specific information such as spelling and alphabetical or-
der. The comparison does not consider multi-digit values, word meaning or the length of the
string. Blanks are taken into account in the comparison. With the optional parameter 'CaseSen-
sitive=1', it can be determined whether upper and lower case should be considered (=1 or not
specified), or not (<>1).

Dynamic text can be used by selecting a text signal. A text signal is set in square brackets []. It is
also possible to enter constant text by just typing the text between the double quotes.

The function returns an analog value as the result.

Results

-1 if the characters of the first text appear in the alphabet before the char-
acters of the second text.

0 if the two texts are equal
1 if the characters of the first text appear in the alphabet after the charac-

ters of the second text.

80 8.4

Expression builder (virtual signals) ibaPDA

Example
The following table shows a couple of examples:

Text1 Text2 Result Comment
CompareText
("Text1","Text2",0)

CompareText
("Text1","-
Text2",1)

1234 abcd 1234 abcd 0 0 1 = 2
1234 abcd 1234 bcde -1 -1 Text1 < Text2

“a” comes before “b”
1234 Abcd 1234 abcd 0 1 Text1 = Text2 (not case sen-

sitive)

Text1 > Text2 (case sensi-
tive)

“A” comes after “a”
12340
abcd

1234 ˽
abcd

1 1 Text1 > Text2

"0" comes after " ˽"
1234
0abcd

1234 abcd -1 -1 Text1 < Text2

“0” comes before “a”
12034
abcd

1234 abcd -1 -1 Text1 < Text2

“0” comes before “3”
1234 abcd 1y34 abcd -1 -1 Text1 < Text2

“2” comes before “y”
1z34 abcd 1Y34 abcd 1 1 Text1 > Text2

“z” comes after “Y”

 8.4 81

ibaPDA Expression builder (virtual signals)

2.7.3 ConcatText
ConcatText('Text1', Text2', …)

Arguments

'Textn' Text signal

Description
This function returns the concatenation of 'Text1', 'Text2' etc. as its result.

If you want to use double quotes in static text, then write two double quotes after each other.

Example
The values of tree text signals should be concatenated.

Text signals are [37:0], [37:1] und [37:2].

Solution
ConcatText([37:0],[37:1],[37:2])

2.7.4 ConvertFromText
ConvertFromText('Expression', 'DecimalPoint*=0', 'Begin=0', 'End'=-1 (end of
text)')

Arguments

'Expression' Name of the text signal
'DecimalPoint*' Decimal point

DecimalPoint = 0

DecimalPoint = 1

Period

Comma
'Begin' Index of the first character of the desired text, default = 0
'End' Index of the first character of the desired text, default = -1 (end of the text)

Parameters ending with * are only evaluated once at the start of the acquisition.

82 8.4

Expression builder (virtual signals) ibaPDA

Description
The function parses a floating comma number from the test and delivers the numeric value as
an analog signal. 0 is output if there is no number in the first position of the range defined by
the 'Begin' and 'End' arguments. Exception: if there are only spaces present up to the first nu-
meric character. Otherwise the text is read up to the first non-numerical position or maximum
to the 'end'. Leading zeros before a number do not need to be interrupted by spaces or non-nu-
merical characters.

Example
Reading in a defined text

Solution
The function is: ConvertFrom Text('Text', 0,22,-1)

The content of the text signal is: Voltage target value: 6.9 V

The voltage value starts with position 22. -1 is used as the end index so that values with more
preceding and/or following commas can also be acquired.

 8.4 83

ibaPDA Expression builder (virtual signals)

2.7.5 ConvertToText
ConvertToText('Expression','IntegerDigits*=1','FractionalDigits*='',Plus-
Sign*=2','DecimalPoint*=0')

Arguments

'Expression' Expression (floating point value), which should be converted into text
'IntegerDigits*' Minimum number of integer digits
'FractionalDig-
its*'

Number of decimal digits

'PlusSign*' Representation of positive values (plus sign)
'PlusSign' = 0

'PlusSign' = 1

'PlusSign' = 2

Space

"+"

Nothing
'DecimalPoint*' Decimal separator

'DecimalPoint *'= 0

'DecimalPoint *'= 1

Dot

Comma

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns floating point value as text. You can specify the minimum number of in-
teger digits with the argument 'IntegerDigits'. By means of the argument 'FractionalDigits' you
specify the number of decimal digits. If 'FractionalDigits' is smaller than zero, then only non-zero
digits will be printed. If 'FractionalDigits' is larger than zero, then zeros are printed. The parame-
ter 'PlusSign' determines the printing of the plus sign.

Examples
Examples for the floating point value [FloatValue] = 42.471130

'Expression' 'Expression' 'IntegerDig-
its'

'Fraction-
alDigits'

'PlusSign' 'DecimalPoint'

[FloatValue]

Value:
42.471130

1 4 2 1

Formula ConvertToText([FloatValue],1,4,2,1)
Result 42.4711

84 8.4

Expression builder (virtual signals) ibaPDA

'Expression' 'Expression' 'IntegerDig-
its'

'Fraction-
alDigits'

'PlusSign' 'DecimalPoint'

[FloatValue]

Value:
42.471130

1 6 1 1

Formula ConvertToText([FloatValue],1,6,1,1)
Result +42.471130

'Expression' 'Expression' 'IntegerDig-
its'

'Fraction-
alDigits'

'PlusSign' 'DecimalPoint'

[FloatValue]

Value:
42.471130

1 -6 0 1

Formula ConvertToText([FloatValue],1,-6,0,1)
Result 42.47113

2.7.6 CountText
CounText('Text', 'CountOnlyDifferent*=0', 'Reset=0')

Arguments

'Text' Name of the text signal
'CountOnlyDiffer-
ent*'

Optional parameter (default = 0)

'CountOnlyDifferent' <> 0

'CountOnlyDifferent' = 0

New text is only counted if it is different
from the preceding text.

Each new text is counted.
'Reset' Optional parameter that can be used to reset the counter reading. ‘Re-

set’ can be an expression as well.
'Reset' > 0

'Reset' = 0

Counter is reset.

Counting released (default)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function counts the reception or the change of a text signal and returns the counter read-
ing.

 8.4 85

ibaPDA Expression builder (virtual signals)

2.7.7 DeleteText
DeleteText('Text','StartPos','Lenght=100000')

Arguments

'Text' Text signal or "text" where characters should be deleted
'StartPos' Analog signal or number; specifies the start position for the deletion in the

text.

Counting starts at zero (0 = 1st character).
'Length' Analog signal or number; specifies the number of characters to be deleted.

Default=100000

Description
This function deletes 'Length' characters from a text beginning with the character at position
'StartPos'. If 'Length' is not specified, all characters from 'StartPos' until the end will be deleted.

Example
Starting at position 4, four characters should be deleted from a text.

Arguments 'Text' 'StartPos' 'Length'
[TextSignal]

Value: ABCDE1234XYZ

4 4

Formula DeleteText([TextSignal],4,4)
Result ABCD4XYZ

2.7.8 FindText
FindText("'Text1'", "'Text2'", ' CaseSensitive=1*')

Arguments

'Text1' Specification of the first comparison text
'Text2' Specification of the second comparison text
'CaseSensitive*' Optional parameter (default = 1) for determining whether a case sensitive

comparison (consideration of upper and lower case) should be made
'CaseSensitive' <> 0 Take upper and lower case into account
'CaseSensitive' = 0 Ignore upper and lower case

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function checks whether 'Text2' is contained in 'Text1' and returns the index as a result (po-
sition in 'Text1, first character = index 0) where 'Text2' was found for the first time. Blanks are
considered in the search. With the optional parameter 'CaseSensitive=1', it can be determined
whether upper and lower case should be considered (=1 or not specified), or not (<>1).

86 8.4

Expression builder (virtual signals) ibaPDA

Dynamic text can be used by selecting a text signal. A text signal is set in square brackets []. It is
also possible to enter constant text by just typing the text between the double quotes.

The function returns an analog value as the result.

Results

-1 if the second text is not included in the first text
0....n Position where 'Text2' is in 'Text1' the first time

Example
The following table shows a couple of examples:

Text1 Text2 Result Comment
FindText ("Tex-
t1","Text2",0)

FindText ("Tex-
t1","Text2",1)

The Sun is
shining.

-1 4 4

The moon
is shining

-1 -1 -1

The sun is
shining

-1 4 -1

 8.4 87

ibaPDA Expression builder (virtual signals)

2.7.9 InsertText
InsertText('Text1','Text2','Pos')

Arguments

'Text1' Text signal or "text" where another text should be inserted
'Text2' Text signal or "text" whose text should be inserted into 'Text1'
'Pos' Analog signal or number; specifies the position where the text should be

inserted.
'Pos' ≤ 0 'Text2' is prepended to 'Text1'.
'Pos' ≥ length of
'Text1'

'Text2' is appended to 'Text1'.

Description
This function inserts a 'Text2' into a 'Text1' at position 'Pos'.

Example

Arguments 'Text1' 'Text2' 'Pos'
[TextSignal_1]

Value: 123_XYZ

[TextSignal2]

Value: abcd_

4

Formula InsertText([TextSignal1],[TextSignal2],4)
Result 123_abcd_XYZ

88 8.4

Expression builder (virtual signals) ibaPDA

2.7.10 MidText
MidText('Text','StartPos','Lenght=100000')

Arguments

'Text' Text signal or "text" from where characters should be returned
'StartPos' Analog signal or number; specifies the start position for the reading in the

text.

Counting starts at zero (0 = 1st character).
'Length' Analog signal or number; specifies the number of characters to be read,

Default=100000

Description
This function reads and returns 'Length' characters from a text beginning with the character at
position 'StartPos'. If 'Length' is not specified, all characters from 'StartPos' until the end will be
read.

Example
A standardized order number (text) contains always at the 6th position a four-digit customer
code. This customer code should be read out.

Arguments 'Text' 'StartPos' 'Length'
[TextSignal_Order]

Value: 4711_ACME_1234XYZ

5 4

Formula MidText([TextSignal_Order],5,4)
Result ACME

 8.4 89

ibaPDA Expression builder (virtual signals)

2.7.11 ReplaceText
ReplaceText('Text','SearchText','ReplaceText')

Arguments

'Text' Text signal or "text" with content to be replaced
'SearchText' Text signal or "text" with the text to be replaced
'ReplaceText' Text signal or "text" as replacement

Description
This function replaces all occurrences of 'SearchText' within 'Text' with 'ReplaceText'. All ar-
guments can be text signals or static text. If you use static text in the formula, put it in double
quotes. By using text signals, you can vary dynamically both the text to be replaced ('Search-
Text') and the replacement text ('ReplaceText'). Even the basic text ('Text'), which contains parts
to be replaced, can be a text signal.

If you want to use double quotes in static text, then write two double quotes after each other.

Examples
The following table shows several simplyfied applications.

Arguments 'Text' 'SearchText' 'ReplaceText'
[TextSignal]

Value: AAA BBB CCC

"BBB" [ReplaceTextSignal]

Wert: XXX
Formula ReplaceText([TextSignal],"BBB",[ReplaceTextSig-

nal])
Result AAA XXX CCC

Arguments 'Text' 'SearchText' 'ReplaceText'
[TextSignal]

Value: AAA BBB CCC

[SearchTextSignal]

Value: BB CC

"XXX"

Formula ReplaceText([TextSignal],[SearchTextSig-
nal],"XXX")

Result AAA BXXXC

Arguments 'Text' 'SearchText' 'ReplaceText'
"Hello Name" "Name" [ReplaceTextSignal]

Value: John
Formula ReplaceText("Hello Name","Name",[ReplaceTextSi-

gnal])
Result Hello John

90 8.4

Expression builder (virtual signals) ibaPDA

2.7.12 TextLength
TextLength('Text')

Arguments

'Text' Text signal or "text" whose length should be returned in number of charac-
ters

Description
This function returns the total number of characters of a text.

Example

Arguments 'Text'
"How many characters are in this text?"

Formula TextLength("How many characters are in this text?")
Result 37

 8.4 91

ibaPDA Expression builder (virtual signals)

2.7.13 TrimText
TrimText('Text', 'TrimOption=0')

Arguments

'Text' Text signal to be processed
'TrimOption' Optional argument, specifying which space characters should be removed

'TrimOption'
= 0

Default; remove leading and trailing space characters.

'TrimOption'
= 1

Remove only leading space characters.

'TrimOption'
= 2

Remove only trailing space characters.

'TrimOption'
= 3

Remove all space characters, including the internal space
characters.

Description
This function removes space characters from a text. By using the argument 'TrimOption' you can
control, which space characters are concerned.

Example
In different steps, the space characters should be removed from the following text of a text sig-
nal 'TextToTrim'. The pipe characters mark begin and end of the text including space, but they
are not part of the text.

| Lorem ipsum dolor sit amet |

Solution

TrimText('TextToTrim') |Lorem ipsum dolor sit amet|
TrimText('TextToTrim',1) |Lorem ipsum dolor sit amet |
TrimText('TextToTrim',2) | Lorem ipsum dolor sit amet|
TrimText('TextToTrim',3) |Loremipsumdolorsitamet|

92 8.4

Expression builder (virtual signals) ibaPDA

2.8	 Miscellaneous	functions

2.8.1 ClientInfo
ClientInfo('"ClientAddress*"','InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns information about the client, which is specified by 'ClientAddress'. The
parameter 'ClientAddress' can be the IP address or the name of the client computer (case insen-
sitive). This information may be used for controlling other functions or for display and diagnostic
purposes.

Specify the information type ('InfoType') you want to receive.

The following information types are supported:

Information types Possible results
0 0 = No connection to server

1 = Client and server are connected
1 Number of signals requested by the client
2 0 = Client does not use a client license

1 = Client uses a client license
3 0 = Client does not use a QPanel license

1 = Client uses a QPanel license

Table 2: Information types and possible results of the ClientInfo function

 8.4 93

ibaPDA Expression builder (virtual signals)

2.8.2 ClientInfoText
ClientInfoText('"ClientAddress*"','InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns textual information about the client, which is specified by 'ClientAddress'.
The parameter 'ClientAddress' can be the IP address or the name of the client computer (case
insensitive). This information may be used for controlling other functions or for display and di-
agnostic purposes.

Specify the information type ('InfoType') you want to receive.

The following information types are supported:

Information types Possible results
0 Name of the client computer
1 IP address of the client computer
2 Windows user name of the client
3 Name of the logged in ibaPDA user
4 Connection starttime of the client
5 ibaPDA Version of the client

Table 3: Information types and possible results of the ClientInfoText function

2.8.3 Count
Count('Expression','Level*','Hysteresis*','EdgeType*', 'Reset=0')

Arguments

'Expression' Measured value
'Level*' Specification of the level value
'Hysteresis' Specification of a hysteresis band
'EdgeType*' Indication of whether rising, falling or rising and falling edges should be counted

'EdgeType' <0 only falling edges (leaving out hysteresis band in the nega-
tive direction)

'EdgeType' >0 only rising edges (leaving out hysteresis band in the posi-
tive direction)

'EdgeType' = 0 falling and rising edges
'Reset' Optional digital parameter that can be used to reset the counter. ‘Reset’ can be

an expression as well.
'Reset' > 0 Counter is reset.
'Reset' = 0 Counter value is retained / continues to count (default)

Parameters ending with * are only evaluated once at the start of the acquisition.

94 8.4

Expression builder (virtual signals) ibaPDA

Note

The 'Reset' condition must not be related to the count function itself.

Description
The function counts the crossings of 'Expression' through 'Level'.

The 'Hysteresis' parameter can be used to define a tolerance band which is above and below
'Level' by equal amounts. Only complete crossings through the tolerance band are counted.

The 'EdgeType' parameter determines which kind of edges are counted.

The 'Reset' parameter is used to reset the counter value to 0. 'Reset' can also be formulated as
an expression.

Examples:

Count([0:0],10,1,1) No reset happens ('Reset' omitted)
Count([0:0],10,1,1,If(Mod(T(),20)=0,TRUE()
m,FALSE()))

The counter is reset in a time interval of 20
seconds.

Count([0:0], [3.1]) e.g. with [3.1] = If([0:0]<1, 1, 0)

The counter is reset as soon as the expression
[3.1] returns TRUE, i.e. if the expression [0:0]
falls below the limit value 1.

Tip

The COUNT function can also be used for binary signals. For this purpose, choose
0.5 for Level and, for example, 0.1 for Hysteresis. This then means that all chang-
es from FALSE to TRUE and vice versa are detected and counted.

Example

Tip

This function can be used in a virtual retentive module. Its result values can thus
be obtained despite stopping and restarting the measurement.

The number of deviations of the measuring signal from the value of 10 in a 20 second interval
in both directions should be counted, but only after complete crossings through the hysteresis
band of width 2. The maximum value of each interval without the start phase should be saved.

Task	description
The 'Reset' parameter of the count function consists of an If query of the modulo function of
time. The maximum value is reset once via the OneShot function as soon as the measured value
has leveled off at the beginning of the measurement.

 8.4 95

ibaPDA Expression builder (virtual signals)

Solution

Blue Measured value Green
area

Hysteresis band

Red Count function Green
signal

Maximum value of the intervals of
the count function

Tip

When specifying a hysteresis band of 2 around 'Level' 10, the crossings in the
increasing direction are first counted for 'Expression'>11 and in the descending
direction for 'Expression'<9.

96 8.4

Expression builder (virtual signals) ibaPDA

2.8.4 CountUpDown
CountUpDown('Up','Down','Reset','UpperLimit=none','LowerLimit=none','ResetOnLim-
it=0')

Arguments

'Up' Digital signal whose rising edge (FALSE --> TRUE) increases the counter by 1
'Down' Digital signal whose falling edge (TRUE --> FALSE) decreases the counter by

1
'Reset' Optional parameter (default = 0) to stop, reset and restart the calculation

'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation and set result to 0

'UpperLimit' Optional parameter (default = 0); upper limit for counter value
'LowerLimit' Optional parameter (default = 0); lower limit for counter value
'ResetOnLimit' Optional parameter (default = 0) for resetting the counter value when

reaching a limit
'ResetOn-
Limit'= 0

Counter value stays on limit value after reaching a limit

'ResetOn-
Limit' = 1

Counter value is reset to 0 after reaching a limit

Description
This function generates a counter value which is increased by 1 with every rising edge on 'Up'
and decreased by 1 with every rising edge on 'Down'. Counting is not limited but can be reset to
zero with 'Reset' = TRUE or 1.

'UpperLimit' and 'LowerLimit' are optional and can be specified either by a fix value or an ex-
pression. If limit arguments are specified and the counter reaches a limit, it does not continue
counting but stays on the limit value until either a counter pulse in the other direction occurs or
'Reset' is set to TRUE.

If the optional parameter 'ResetOnLimit' is TRUE or 1, then the counter will be reset to zero as
soon as it reaches or exceeds a limit.

Resetting to zero only works if the lower limit is <0 and the upper limit is >0.

 8.4 97

ibaPDA Expression builder (virtual signals)

Example

98 8.4

Expression builder (virtual signals) ibaPDA

2.8.5 Delay
Delay('Expression','NumberSamples*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns a delayed copy of the ‘Expression’ signal. The delay is specified in number
of measurements ('NumberSamples'). The result is a signal curve with the values of the original
signal for ‘NumberSamples’ before the current time.

To avoid a memory overflow, ‘NumberSamples’ is limited to 10,000.

Tip

The time base of the function is relevant for the number of measurements for
different time bases of the measured value and function.

Example
A measured value should be displayed delayed by 2 measured values and by 10 measured val-
ues.

Task	description
For the chosen time base of 100 ms, a delay of two measured values corresponds to a time de-
lay of 0.2 seconds and a delay of 10 measured values corresponds to 1 second.

Solution
In the figure below the blue curve shows the original signal and the red curve shows the de-
layed signal by 2 measured values (= 0.2 seconds). The green curve shows the delayed signal by
10 measured values (= 1 second).

 8.4 99

ibaPDA Expression builder (virtual signals)

2.8.6 DelayLengthL
DelayLengthL('Expression','Length','MaxLengthDelta','DelayInMeter','Resolution*',
'Filter=0*')

Arguments

'Expression' input signal
'Length' Length signal (in m)
'MaxLengthDel-
ta'

Upper limit to take into account the changes of the length signal

'DelayInMeter' Delay (in m)
'Resolution*' Resolution: Length basis of the result (in m)
'Filter*' Optional parameter (default = 0) to set the filter for time-length conversion

'Filter' = 1 Minimum filter
'Filter' = 2 Maximum filter
'Filter' = 0 and oth-
ers

No filter

Parameters ending with * are only evaluated once at the start of the acquisition..

Description
This function uses the 'Length' length signal (in m) to create a length-based version of 'Expres-
sion' that is delayed over 'DelayInMeter' meters. Changes in the length signal that exceed the
'MaxLengthDelta' are ignored. The resolution is the length base of the result (in m).

'Filter' determines what filter is used during the time-to-length conversion.

Mainly for quality data monitoring in conjunction with ibaQDR, measured signals from distant
sources can be aligned with regard to the product length. The distance between the signal
sources determines the ‘DelayInMeter’ value.

100 8.4

Expression builder (virtual signals) ibaPDA

2.8.7 DelayLengthV
DelayLengthV('Expression','Speed','DelayInMeter','Resolution*', 'Filter=0*')

Arguments

'Expression' input signal
'Speed' Speed signal (in m/s)
'DelayInMeter' Delay (in m)
'Resolution*' Resolution: Length basis of the result (in m)
'Filter*' Optional parameter (default = 0) to set the filter for time-length conversion

'Filter' = 1 Minimum filter
'Filter' = 2 Maximum filter
'Filter' = 0 and oth-
ers

No filter

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function uses the 'Speed' speed signal (in m/s) to create a length-based version of 'Expres-
sion' that is delayed over 'DelayInMeter' meters. The resolution is the length base of the result
(in m).

'Filter' determines what filter is used during the time-to-length conversion.

 8.4 101

ibaPDA Expression builder (virtual signals)

2.8.8 DWORD
DWORD('Low','High')

Arguments

'Low' 16 bit integer: Word
'High' 16 bit integer: Word

Description
This function returns the 32 bit integer DWORD consisting of the int16 WORDS ‘Low’ and ‘High.’

Example
Calculating two DWORDS from a simple 0 and 1 combination of 'Low' and 'High'.

from int16 WORDS compound DWORD
DWORD('Low','High') int16 'High' int16 'Low' Conv. Dec.
DWORD(0, 1) 0000 0000 0000 0001 0000 0000 0000 0000 216 65536
DWORD(1, 0) 0000 0000 0000 0000 0000 0000 0000 0001 20 1

Solution
The figure below shows the calculation of two simple DWORDS.

102 8.4

Expression builder (virtual signals) ibaPDA

2.8.9 ElapsedTime
ElapsedTime('Start','Stop')

Description
This function returns the time since the last rising edge for 'Start'. The time is stopped at the
rising edge for 'Stop'.

Example
Measurement of the time gap between the last rising edge of a measured value up to the next
rising edge of a different measured value.

Solution
In the figure below the blue bar shows the 'Stop' signal and the red bar shows the 'Start' signal.
The green curve shows the time that elapsed between the rising edges of 'Start' to 'Stop'.

Note

By switching the edges in the sampling grid, the graphic presentation and calcu-
lation of the elapsed time may differ by one sample.

 8.4 103

ibaPDA Expression builder (virtual signals)

2.8.10 ExecuteCommand
ExecuteCommand('Trigger',"'Command'","'Arguments'","'UserName'","'Password'",'Tim-
eout=0')

Arguments

'Trigger' Binary signal or expression as a trigger for the execution of the command
"'Command'" Full and absolute path to the command (.exe, .bat etc.) that should be exe-

cuted
"'Arguments'" Arguments/parameters required to execute the command
"'UserName'" Username of an account which has the permission to execute "'Com-

mand'".
"'Password'" The password, related to the user name
'Timeout' Optional parameter; if specified and >0, the execution will be aborted as

soon as 'Timeout' [s] has expired.

Description
This function executes the "'Command'" "'Arguments'" command line for a rising edge of 'Trig-
ger'. The return value is 1 (TRUE) while the invoked process is running. Thus, this function is to
used as expression for digital signals. Other rising edges are ignored as long as the process is
running.

The full, absolute path for the executable file must be specified for "'Command'", relative to the
ibaPDA server.

If ‘Timeout’ is not specified, the command execution is not aborted and can run endlessly. If a
value larger than zero is specified for ‘Timeout’, the execution of the command is aborted if it is
not finished by ‘Timeout’ seconds.

The specification of username ("'UserName'") and password ("'Password'") is required for using
this function. For security reasons the executables and programs called by this function must
run under a dedicated user account. The account specified by "'UserName'" and "'Password'"
must have the permission to execute the specified command.

When entering argument, username and password you can use the text encryption feature to
obfuscate this information. The text encryption feature is offered as soon as you start to enter
text between quotation marks ("…").

Note

If you use this function to call programs which generally have a user interface
(GUI), then the GUI is not visible. Because the started program runs in the ser-
vices session without an associated desktop, it is listed in the task manager, but
it’s GUI is missing.

104 8.4

Expression builder (virtual signals) ibaPDA

Example 1
Computer shutdown

Task	description
Depending on a signal from the system control due to switching to an uninterrupted power sup-
ply (USP) during a power outage, the ibaPDA computer should be shut down.

Solution
The "shutdown" command from the Windows Command Shell is used to shutdown the com-
puter. A batch file is used because multiple commands, such as stopping the ibaPDA service, are
required.

ExecuteCommand([4.14], "D:\Schulung\ibaPDA_ExecuteCommand\Shut-
down_PC.bat","","MyUsername","MyPassword")

■	 [4.17]: Digital trigger signal to execute the command

■	 D:\training\ibaPDA_ExecuteCommand\Shutdown_PC.bat: Program path for
the batch file

■	 MyUsername and MyPassword: Specifications for user account

Contents of the Shutdown_PC.bat batch file:

1

2

3

4

SETLOCAL

sc stop ibaPDAService

shutdown /f /s /t 10

ENDLOCAL

Example 2
Starting a batch file, which creates a text file with up-to-date content.

Task	description
On a rising edge of a digital signal an actual counter value should be written

Solution
ExecuteCommand([3.17],"c:\tmp\work.bat", GenerateText("I-
tems_%1"), "MyUserName","MyPassword",0)

■	 [3.17]: Digital trigger signal to execute the command

■	 c:\tmp\work.bat: Program path for the batch file to be executed work.bat; specifiy-
ing a batch file is like using a command.
Contents of the batch file (example):

 8.4 105

ibaPDA Expression builder (virtual signals)

■	 GenerateText("Items_%1"): Argument for the batch file; the result of this expression
(generating a string with counter value) is put into the text file dummy.txt as parameter %1
of the batch file.
Contents of the text file dummy.txt (example, dynamic content highlighted in yellow):

■	 MyUserName, MyPassword: Login credentials of the user account

■	 0: Value for timeout, i.e. the execution is not aborted.

2.8.11 GenerateSignal
GenerateSignal('Type', 'Amplitude=10','T1=1','T2=1')

Arguments

'Type' Specification of the signal type
'Type' = 0 Sine function, with A = amplitude and T1 =

period
'Type' = 1 Cosine function, with A = amplitude and

T1 = period
'Type' = 2 Triangle function, with A = amplitude, T1 =

rising edge time, T2 = falling edge time
'Type' = 3 Block function, with A = amplitude, T1 =

duration upper level, T2 = duration lower
level

'Type' = 4 Random signal with A = maximum ampli-
tude

'Amplitude' Optional parameter, specifying the
amplitude; default = 10

'T1' Optional parameter, time specifica-
tion 1 (except for type 4) given in s;
default = 1

'T2' Optional parameter, time specifica-
tion 2 (only for type 2 and type 3)
given in s; default = 1

Description
This function generates a test signal with the 'Amplitude' amplitude and periods 'T1' and 'T2.'
The following signal types can be created:

106 8.4

Expression builder (virtual signals) ibaPDA

Example
Several examples of generated signals

Solution

Blue Sine function type 0 Red Cosine function type 1
Green Triangle function type 2 Yellow Block function type 3
Purple Random function type 4

 8.4 107

ibaPDA Expression builder (virtual signals)

2.8.12 GenerateText
GenerateText('Text*')

Parameters ending with * are only evaluated once at the start of the acquisition..

Arguments

'Text' Text which should be generated as content of the text signal. The text has
to be put between quotation marks ("..").

The text will be evaluated only once at start of acquisition.
%n Parameter, which can be inserted in the text and will be re-

placed in the generated text by an automatic counter value.
The counter counts up by 1 with every nth cycle, based on
the timebase of the ibaPDA system, e.g.

%1 - with each cycle

%2 - with each second cycle

%10 - with each tenth cycle

%100 - with each 100th cycle. Cycle

Description
This function generates a text signal. It can only be used in the signal table Analog of a suitable
module (e.g. virtual module or output module)

The generated text signal can be used like other text signals, e.g. in a text creator module, a text
digital display or a QPanel label.

You may use placeholders %1, %2,... in the text. The placeholder %n will be replaced by the
counter value which increased every n samples.

Example

The upper line shows the complete function call. The lower line shows the result in a QPanel
label.

108 8.4

Expression builder (virtual signals) ibaPDA

2.8.13 GetFloatBit
GetFloatBit('Expression','BitNo')

Arguments

'Expression' Any number
'BitNo' This number (0…15 or 0…31) specifies the position of the desired dig-

ital signal in a 16-bit or 32-bit block in the data stream with regard to
the related offset address. Increase of bit no. by 1 up to 15 (31), then
increase of address by 2 (4).

Description
This function interprets 'Expression' as the bitmask of a float value and returns as its result the
Boolean value of the 'BitNumber' bit of 'Expression'. Valid bit number sequence: 0 (LSB) to 31
(MSB).

This function was created especially for the case that 32 bits are packed in a float data for trans-
mission or recording. The GetBitFloat function only takes the value of the specified 'BitNo' bit
regardless of whether it is part of the mantissa or exponent. Unlike the GetBit function, there is
no rounding of values.

Example
A value entered in 'Expression' is converted to the floating-point format IEEE 754 and the digits
bits which are set to TRUE accordingly, are retrieved.

Solution
Floating-point numbers according to the IEEE 754 format can generally be written as follows:
(sign)*mantissa*10^Exponent

The number 0.15625 reads as a floating-point number according to IEEE 754 as follows:

Sign (1 bit) Exponent (8 bit) Mantisse (23 bit)
0 0111 1100 0100 0000 0000 0000 0000 000

In this case, the LSB (least significant bit) is at the extreme right point.

Tip

Floating-point numbers according to the IEEE 754 format are written in the man-
ner shown. The following points for the individual components should be noted:

Sign: 0 stands for positive; 1 for negative

Exponent: Since with the conversion to a floating-point number, the exponent
value is shifted by 127, 127 must be subtracted from the displayed exponent in
the conversion into a decimal number.

Mantissa: Because the mantissa has a 1 before the decimal point by default, this
digit is no longer represented. All mantissa digits are therefore decimal digits and
must take into account the conversion with negative exponents to base 2.

 8.4 109

ibaPDA Expression builder (virtual signals)

The figure below shows the retrieval of the valence of selected bits of the float value of
0.15625.

110 8.4

Expression builder (virtual signals) ibaPDA

2.8.14 GetIntBit
GetIntBit('Expression','BitNo')

Description
This function returns the Boolean value of the 'BitNo' bit of 'Expression' as its result after round-
ing the 'Expression' to the nearest integer value. The rounding limit is in each case the next 0.5
increment. (2.49 → 2; 2.50 → 3).
Valid bit number sequence: 0 (LSB) to 31 (MSB)

Example
Representation of time in Boolean values

Solution
The figure below shows the GetIntBit function of the first six bits of the time function, T().

 8.4 111

ibaPDA Expression builder (virtual signals)

2.8.15 GetSignalMetaData
GetSignalMetaData('Signal*"','InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns metadata information of a signal. The parameter 'Signal' can be supplied
as signal number ([m:n] resp. [m.n]) or as signal name ([SignalName]).

Specify the information type ('InfoType') you want to receive.

The following information types are supported:

Information types Possible results
0 Signal name
1 Signal unit
2 Comment 1
3 Comment 2

Table 4: Information types and possible results of the GetSignalMetaData function

112 8.4

Expression builder (virtual signals) ibaPDA

2.8.16 GetSystemTime
GetSystemTime('Part*')

Arguments

'Part*' Part to be displayed of the system time specification
'Part' = 0 milliseconds
'Part' = 1 seconds
'Part' = 2 minutes
'Part' = 3 hours
'Part' = 4 day of the month
'Part' = 5 month
'Part' = 6 year
'Part' = 7 day of the year
'Part' = 8 day of week (Monday=1, Sunday=7)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the part specified under 'Part' of the system time.

Tip

In ibaQPanel, the day of the week (Part 8) can easily be displayed with its name
by using a multi-state display. For the other parts, the normal label works fine.
Use a gauge to display the time on an analog-like clock in ibaQPanel.

 8.4 113

ibaPDA Expression builder (virtual signals)

Example
Output of the minute part, second part and millisecond part of the system time.

Solution
In the figure below the blue curve shows the minutes of the system time ('part' = 2) and the red
curve shows the seconds of the system time ('part' = 1). The green curve shows the milliseconds
of the system time ('part' = 0).

114 8.4

Expression builder (virtual signals) ibaPDA

2.8.17 GetSystemTimeAsText
GetSystemTimeAsText('DateTimeFormat*="yyyy-MM-dd HH:mm:ss"', 'UTC*=0', 'Enable=1')

Arguments

'Argument' Description
'DateTimeFor-
mat'

yy, yyyy Year 2 or 4 digits
M, MM

MMM,
MMMM

Month M: 1, 2, 3, 12; MM: 01, 02, 03, ...12

Name of month

d, dd

ddd, dddd

Day d: 1, 2, 3, ...31; dd: 01, 02, 03, ... 31

Day of week
h, hh,

H, HH

Hour 12-hour notation

Hour 24-hour notation
m, mm Minutes
s,ss Seconds
f, ff, fff Fractions of a second up to 0.1, 0.01, 0.001 (millisecond), ...

precision
tt AM/PM indicator; only available if ibaPDA service runs in a

culture that supports AM/PM (e.g. US-EN)
'UTC' 0 (default)

1

Date/time local

UTC date and time
'Enable' 1 Optional argument; if 'Enable' is provided, then date/time

will only be emitted when 'Enable' = 1 or true.

If the argument is omitted, date/time will always be emit-
ted.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the current date and time. Depending on the parameter 'UTC', date and
time will be returned as local or UTC date/time.

The calculation can be controlled using the optional parameter, 'Enable.' If you want to take
advantage of higher precision by using fractions of a second, you should provide the 'Enable'
parameter and set it on 1 or true.

 8.4 115

ibaPDA Expression builder (virtual signals)

Examples
Examples for Tuesday, August 07, 2023, 17:05 (CEST)

Formula Result
GetSystemAsText("yyyy-MM-dd
HH:mm:ss",0)

2023-08-07 17:05:42

GetSystemAsText("yyyy-MM-dd
HH:mm:ss",1)

2023-08-07 15:05:42

GetSystemAsText("yy-MMM-dd
hh:mm:ss",1)

23-Aug-07 03:05:42

GetSystemAsText("yyyy-MM-dd
HH:mm:ss fff",0)

2023-08-07 17:05:42 478

116 8.4

Expression builder (virtual signals) ibaPDA

2.8.18 GetWeekOfYear
GetWeekOfYear('Rule*=0', 'FirstDayOfWeek*=0')

Arguments

'Rule*' Definition rule for first week of the year
'Rule' = 0 The first week of the year is the one that includes at least

4 days of that year. (ISO 8601)
'Rule' = 1 The first week of the year starts on January 1st.
'Rule' = 2 The first week of the year starts on the first day of the

week on or after January 1st.
'FirstDayOf-
Week*'

Definition of first day of the week

'FirstDayOf-
Week'= 0

Monday (ISO 8601)

'FirstDayOf-
Week'= 1

Tuesday

'FirstDayOf-
Week'=2

Wednesday

'FirstDayOf-
Week'=3

Thursday

'FirstDayOf-
Week'= 4

Friday

'FirstDayOf-
Week'= 5

Saturday

'FirstDayOf-
Week'= 6

Sunday

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the number of the current week in the current year. The week numbering
is done according to 'Rule'.

2.8.19 LimitAlarm
LimitAlarm('Expression','Limit','DeadBand','Time',' Reset=0’)

Arguments

'Expression' Measured value
'Limit' Limit value, from which the function returns TRUE
'DeadBand' Specification of a dead zone below the limit value, within which the function

does not reset to FALSE
'Time' Specification of the time, for which the measured value must be above the limit

value until the function returns TRUE

 8.4 117

ibaPDA Expression builder (virtual signals)

'Reset' Optional parameter (default = 0) to stop and restart the calculation
'Reset' = 0 Perform calculation
'Reset' = 1 Stop calculation, reset and set result to 0
'Reset' = 2 Stop calculation and keep result

Description
This function monitors the measured value ('Expression') and sets the result to TRUE if the mea-
sured value is longer than the specified time ('Time') above the ('Limit') limit value. The result of
the function becomes FALSE again if the measured value falls below the limit value by the value
specified under the ('DeadBand') deadzone.

Tip

The LimitAlarm function can also be used for a lower limit For this purpose, only
the measured value and the limit value must be flipped, i.e. multiplied by (-1).

e.g: LimitAlarm([0:1] *(-1), 9 *(-1), 0.5, 0.4)

Example
The function should return TRUE if the measured value is longer than 0.4 seconds above the val-
ue 11. The function should then return FALSE again if the measured value has fallen below 10.5.

Solution
In the figure below the blue curve shows the measured value and the red bar shows when the
limit is exceeded. The green band shows the dead zone that prevents a direct FALSE setting of
the function.

118 8.4

Expression builder (virtual signals) ibaPDA

2.8.20 ModuleSignalCount
ModuleSignalCount('ModuleNo*', 'SignalType*=0', 'Direction*=0')

Arguments

'SignalType*' Signal type
'SignalType' = 0 Analog and digital signals
'SignalType' = 1 Analog signals only
'SignalType' = 2 Digital signals only

'Direction*' Input or output direction or both
'Direction'= 0 Inputs and Outputs
'Direction'= 1 Inputs only
'Direction'=2 Outputs only

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the number of active signals in a module with module number 'Module-
No'. With the parameter 'SignalType' you can determine, which signal types are to be consid-
ered. Signals, which are configured in the module but not checked as Active, are not taken into
account.

 8.4 119

ibaPDA Expression builder (virtual signals)

2.8.21 PulseFreq
PulseFreq('Expression','Omega=0*','EdgeType=2*')

Arguments

'Expression' Pulse counter signal
'Omega*' Filter frequency
'EdgeType*' Edge type to be counted

'EdgeType' = -1 Falling edges only
'EdgeType' = 0 Rising and falling edges
'EdgeType' = 1 Rising edges only
'EdgeType' = 2 'Expression' is a pulse counter

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function computes the frequency of 'Expression' pulse counters or pulses. The unit of the
result is pulses/sec or Hz.

A low-pass filter with an 'Omega' limit angular speed is applied to the result. If 'Omega' is 0 then
the low-pass filter is deactivated. 'EdgeType' determines which edges of pulses should be count-
ed.

Zero is returned as the calculated frequency if no pulse occurs in 1000 samples.

This function was especially created for using the WAGO incremental encoder 750-631. You may
use the function to calculate the speed based on the pulse counter signal from the encoder. The
pulse counter value is differentiated taking into consideration possible counter overflows. As the
result of the differentiation may include interfering frequencies or noise, a low-pass filter can
then be used. The filter frequency to be set should be slightly above the maximum pulse fre-
quency.

2.8.22	 RestartAcquisition
RestartAcquisition('Trigger')

Description
The acquisition is restarted when a rising edge on 'Trigger' occurs. The function returns the val-
ue 1 when the acquisition is restarted.

120 8.4

Expression builder (virtual signals) ibaPDA

2.8.23 SampleAndHold
SampleAndHold('Expression','Sample','Initial=0)

Arguments

'Expression' Measured value
'Sample' Parameter that determines whether the function follows the measured value

(1) or holds the last measured value (0). 'Sample' can be a condition itself or
be determined by a different function.

'Initial' Optional parameter (default = 0), which determines the initial value of the
function when 'Sample' is inactive at the start of the measurement.

Description
This function is a sample-hold function. The output follows 'Expression' when 'Sample' = TRUE.
It remains unchanged when 'Sample' = FALSE. With the optional 'Initial' parameter, the initial
value of the output can be specified if the function is on "Hold" when called.

Example
The function should follow a measured value if it is positive and be held as soon as the mea-
sured value becomes negative.

Task	description
An If query as the 'Sample' parameter returns the value 1 for positive values and the value 0 for
negative values.

Solution
In the figure below the blue curve shows the measured value and the red curve shows the out-
put value with held measured values.

 8.4 121

ibaPDA Expression builder (virtual signals)

2.8.24 SampleOnce
SampleOnce('Expression','Sample')

Arguments

'Expression' Measured value
'Sample' Parameter which determines when the function should follow the measured

value 'Expression' for exactly one sample. 'Sample' can be a condition itself
or be determined by a different function.

Description
This function is a sample-once-function. The result of the function follows 'Expression' for the
duration of one sample when a rising edge occurs on 'Sample'. For all other timestamps the re-
sult is NaN if 'Expression' is a numeric signal and an empty string if 'Expression' is a text signal.

2.8.25 Sign
Sign('Expression')

Description
This function returns the sign of 'Expression' as its result.

'Expression' > 0 --> +1

'Expression' = 0 --> 0

'Expression' < 0 --> -1

Example
Only the sign from a measured value is relevant.

Solution
In the figure below the blue curve shows the measured value and the red curve shows the sign
of the measured value.

122 8.4

Expression builder (virtual signals) ibaPDA

2.8.26 T
T()

Description
This function returns the time elapsed since the start of measuring (in seconds).

Using the time function, time-dependent virtual variables, e.g. sine waves, can be calculated.

Example of a sine wave of 0.5 Hz: sin(2*PI()*0.5*T())

Tip

The time function can be entered In the expression editor simply by double click-
ing in other expressions, as is the case with a signal. The two brackets behind T
are required for syntax reasons, as in the case of the number Pi.

Example
Presenting the time function and a time-dependent, virtual variable

Solution
Calculation of the time function and a time-depending sine curve

 8.4 123

ibaPDA Expression builder (virtual signals)

2.8.27 VarDelay
VarDelay('Expression','Delay', 'MaxDelay=30*')

Arguments

'Expression' input signal
'Delay' Time delay in seconds
'MaxDelay*' Optional parameter (default = 30) to determine the maximum delay permit-

ted in seconds

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function delays the 'Expression' signal by the 'Delay' time. In contrast to the Delay function,
the delay time may change over time. 'MaxDelay' specifies the maximum delay permitted and is
preset to 30 s by default.

Example
Temporally variable delay of a signal reaching the maximum permitted delay

Solution
The time function T() is used as the variable delay. This and a sine signal are set to this variable
delay and the resulting curves are recorded.

As soon as the maximum delay is reached, the delay remains constant whereas the resulting
curves only represent the shifted output signals.

In the figure below the top part shows the delay of the time signal by a variable shift with a
maximum value of 10 seconds. The bottom part shows the delay of a sinusoidal function with
three different delay and maximum delay values.

124 8.4

Expression builder (virtual signals) ibaPDA

Tip

Negative values for 'Delay' do not produce an error message but are treated as 0,
i.e. there is no delay.

 8.4 125

ibaPDA Expression builder (virtual signals)

2.8.28 WindowAlarm
WindowAlarm('Expression','Limit1','DeadBand1','Limit2','DeadBand2','Time',' Re-
set=0')

Arguments

'Expression' Measured value
'Limit1' Upper limit value, from which the function returns TRUE
'DeadBand1' Specification of the dead zone below the upper limit value ('Limit1'), within

which the function does not reset to FALSE
'Limit2' Lower limit value, from which the function returns TRUE
'DeadBand2' Specification of the dead zone above the lower limit value ('Limit2'), within

which the function does not reset to FALSE
'Time' Specification of the time, for which the measured value must be greater than

the upper limit or smaller than the lower limit until the function returns TRUE
'Reset' Optional parameter (default = 0) to stop and restart the calculation

'Reset'=0 Perform calculation
'Reset'=1 Stop calculation, reset and set result to 0
'Reset'=2 Stop calculation and keep result

Description
This function monitors the measured value ('Expression') and sets the result to TRUE if the mea-
sured value is longer than the specified time ('Time') outside the range between the upper limit
value ('Limit1') and the lower limit value ('Limit2'). The result of the function becomes FALSE
again if the measured value falls below the upper limit by the value specified under 'Dead-
Band1', or exceeds the lower limit by the value specified under 'DeadBand2'.

126 8.4

Expression builder (virtual signals) ibaPDA

Example
The function is to be triggered if the measured value is outside the value range between 8 and
12 for longer than 0.4 s. The upper dead zone should be 0.5, the lower dead zone 0.3.

Solution
In the figure below the blue curve shows the measured value and the red bar shows the triggers
the WindowAlarm function. The green areas show the dead zones of the respective limits.

 8.4 127

ibaPDA Expression builder (virtual signals)

2.9	 Diagnosis	functions

2.9.1 CameraStatus
CameraStatus('ModuleNo*','SignalNo*','Timeout=2*')

Arguments

'ModuleNo*' Module number of the ibaCapture server in the signal
tree

'SignalNo*' Signal number (camera)
'Timeout*' Time in seconds in which the sync signal must change;

default = 2

Parameters ending with * are only evaluated once at the start of the acquisition..

Description
This function returns the status of an ibaCapture camera.

Results

0 Camera not ok
1 Camera OK

A camera is not ok when the value of the sync signal of the camera does not change within
'Timeout' seconds. Both the recording of this camera on the ibaCapture server as well as the
synchronization between ibaCapture server and ibaPDA server must be running in order to facil-
itate the sync signal to change.

‘ModuleNumber’ is the module number of the ibaCapture server in the signal tree.

Example:

Status of "Camera1" with Timeout = 2 s: CameraStatus(18, 0, 2)

128 8.4

Expression builder (virtual signals) ibaPDA

2.9.2 DataStoreInfo
DataStoreInfo('DatastoreIndex*','InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition..

Description
This function provides information about the selected data storage. This information may be
used for controlling other functions or for display and diagnostic purposes.

For normal (PDA) data storage, use 'DatastoreIndex' >= 0.

For ibaQDR data storage, use 'DatastoreIndex' < 0.

The index can easily be obtained by looking at the tree structure in the configuration dialog of
the data record. Index increases top-down.

Specify the information type ('InfoType') you want to receive.

The following information types are supported:

Information	types Possible results
0: recording status 0 = stopped

1 = waiting for trigger

2 = recording

3 = posttrigger recording
1: Saving in the backup directory: 0 = base directory is used

1 = backup directory is used
2: recorded time in the current file expressed
in seconds

Value is updated every second.

3: the free space on the current hard disk ex-
pressed in MB

Value is updated every minute.

4: is ibaQDR synchronized? 0 = ibaQDR is NOT synchronized

1 = ibaQDR is synchronized
5: Image triggers storing to backup directory -1=No active or configured image triggers

0=All image triggers are using the base direc-
tory

1=All image triggers are using the backup di-
rectory

2=Some image triggers are using the base
directory and some are using the backup di-
rectory

6: Number of overlapping data files Actual value

Table 5: Information types and possible results of the DataStoreInfo function

 8.4 129

ibaPDA Expression builder (virtual signals)

2.9.3	 DataStoreInfoDB,	...Influx,	...Kafka,	...MindSphere,	...MQTT
DataStoreInfoDB('DatastoreIndex*','InfoType*')

DataStoreInfoInflux('DatastoreIndex*','InfoType*')

DataStoreInfoKafka('DatastoreIndex*','InfoType*')

DataStoreInfoMindSphere('DatastoreIndex*','InfoType*')

DataStoreInfoMQTT('DatastoreIndex*','InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function provides information about the selected database or cloud data stores. This infor-
mation may be used for controlling other functions or for display and diagnostic purposes.

Identify the desired DB/Cloud data storage with the 'DatastoreIndex*' > = 0.

The index can easily be obtained by looking at the tree structure in the configuration dialog of
the Data Storage. Index increases top-down.

Specify the information type ('InfoType') you want to receive.

The following information types are supported:

Information types Possible results
0: Recording status 0 = stopped

1 = waiting for trigger

2 = recording

3 = posttrigger recording
1: Data throughput Value in kB/s
2: Is server connected? 0/False = no

1/True = yes
3: Recorded time since last start trigger Value in seconds; this will be constant 0 for

continuous recording.
5: Current buffer usage Value in %
6: Current file buffer usage Value in %
7: Unprocessed bytes in file buffer Value in %

Table 6: Information types and possible results of the DataStoreInfoDB function

130 8.4

Expression builder (virtual signals) ibaPDA

2.9.4 DataStoreInfoHD
DataStoreInfoHD('DatastoreIndex*','InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description

Note

With ibaPDA v8.4 his function has been subject to a breaking change. In order to
support all recording states of the triggered HD recording, the DataStoreInfoHD
diagnostic function now uses the same values for the status (info type 0) as the
other DataStoreInfo functions. If you have already used this function, please
check your evaluation of the status values.

This function provides information about the selected HD records. This information may be used
for controlling other functions or for display and diagnostic purposes.

Identify the desired HD data records with the 'DatastoreIndex*' > = 0.

The index can easily be obtained by looking at the tree structure in the configuration dialog of
the data record. Index increases top-down.

Specify the information type ('InfoType') you want to receive.

The following information types are supported:

Information types Possible results
0: Recording status 0 = Stopped

1 = Waiting for trigger

2 = Recording

3 = Post trigger recording
1: Data throughput Value in KB/s
2: Is server connected? 0/False = no

1/True = yes
5: Current buffer usage Value in %
Current file buffer usage Value in %
Unprocessed bytes in file buffer Value in %

Table 7: Information types and possible results of the DataStoreInfoHD function

 8.4 131

ibaPDA Expression builder (virtual signals)

2.9.5 DongleInfo
DongleInfo('InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Note

This function is still supported for backward compatibility purposes. Please use
instead the LicenseInfo function, which serves the same purposes while support-
ing soft licenses as well.

Description
This function provides information about various properties related to the dongle. This informa-
tion can be used for display and diagnostic purposes.

Specify the information type ('InfoType') you want to receive. This type of information is deter-
mined and output at the start of the measurement. If you want to receive more information
from the dongle then you need to configure the function several times, with a different type of
information each time.

The following information types are supported:

Information types Possible results
0: Dongle available TRUE = dongle available

FALSE = no dongle or dongle defective
1: Dongle time limit in days Value of the remaining lifetime of the dongle
2: Demo time limit in days Value of the remaining lifetime of the dongle

for trial periods / demo versions
3: ibaQDR acquisition time limit in seconds Value of the remaining time which continues

to run the ibaQDR system after the dongle has
been removed.

10: Dongle inserted - counter Number of times the dongle was inserted
11: Dongle removed - counter Number of times the dongle was removed
12: Dongle changed - counter Number of times the dongles were changed

Table 8: Information types and possible results of the DongleInfo function

Application	example
By evaluating information type 0 (availability of the dongle), you can monitor whether or not a
dongle is available and if the dongle is defective.

You can use this information to trigger an email informing the receiver that the dongle is no lon-
ger available. A system that was lost during operation of the dongle is stopped after a waiting
period. This should be avoided, especially in production-relevant ibaQDR systems.

132 8.4

Expression builder (virtual signals) ibaPDA

2.9.6 FobDLinkStatus
FobDLinkStatus('BoardNo*','LinkNo*')

Arguments

'BoardNo*' Board number (0 to 7)
'LinkNo*' Link number (refer to the signal tree in the I/O Manager)

Parameters ending with * are only evaluated once at the start of the acquisition..

Description
This function returns the status of an ibaFOB-D board link.

The card number (from 0 to 7) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The link number can be obtained from the signal
tree in the I/O Manager.

Results

0 Link not active
1 Link OK
2 Link interrupted
3 Link RX ok, but flex ring interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

When using a bus monitor (such as ibaBM-DPM-S), at least one active slave must be configured
in the I/O Manager.

2.9.7 FobFastLinkStatus
FobFastLinkStatus('BoardNo*','LinkNo*','Filtered*')

Arguments

'BoardNo*' Board number (0 to 3)
'LinkNo*' Link number (refer to the signal tree in the I/O Manager)
'Filtered*' Filter settings (TRUE or FALSE)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the status of a link of an ibaFOB-X card in 32-bit mode (32 Mbit/s).

The card number (from 0 to 3) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The link number can be obtained from the signal tree
in the I/O Manager. ‘Filtered’ can be TRUE or FALSE. The filtered link status ignores any change
in link status that is faster than 40 ms.

 8.4 133

ibaPDA Expression builder (virtual signals)

Results

0 Link not active
1 Link OK
2 Link interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

When using a bus monitor (such as ibaBM-DPM-S), at least one active slave must be configured
in the I/O Manager.

2.9.8 FobFlexDeviceStatus
FobFlexDeviceStatus('BoardNo*','LinkNo*','Address*')

Arguments

'BoardNo*' Board number (0 to 7)
'LinkNo*' Link number (refer to the signal tree in the I/O Manager)
'Address*' Address of the device in the Flex ring (1 to 15)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the status of the Flex device with the 'Address' address at the 'LinkNo' link
of a 'BoardNo' ibaFOB-D card.

The card number (from 0 to 7) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The link number can be obtained from the signal
tree in the I/O Manager.

The device address can be set on the rotary switch of the device. Address values 1 to 15 are
possible.

Results

0 Device not configured
1 Device OK
2 Device not connected

134 8.4

Expression builder (virtual signals) ibaPDA

2.9.9 FobFLinkStatus
FobFLinkStatus('BoardNo*','LinkNo*')

Arguments

'BoardNo*' Board number (0 to 3)
'LinkNo*' Link number (refer to the signal tree in the I/O Manager)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the status of a link of an FOB-S or an FOB-X card in 3-Mbit mode
(3.3 Mbit/s).

The card number (from 0 to 3) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The link number can be obtained from the signal
tree in the I/O Manager.

Results

0 Link not active
1 Link OK
2 Link interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

When using a bus monitor (such as ibaBM-DPM-S), at least one active slave must be configured
in the I/O Manager.

2.9.10 FobMLinkStatus
FobMLinkStatus('BoardNo*','LinkNo*')

Arguments

'BoardNo*' Board number (0 to 3)
'LinkNo*' Link number (refer to the signal tree in the I/O Manager)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the status of a link of an FOB-S card running in FOB-M mode (5 Mbit/s).

The card number (from 0 to 3) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The link number can be obtained from the signal
tree in the I/O Manager.

 8.4 135

ibaPDA Expression builder (virtual signals)

Results

0 Link not active
1 Link OK
2 Link interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

2.9.11 FobPlusControlLinkStatus
FobPlusControlLinkStatus('BoardNo*')

Arguments

'BoardNo*' Board number (0 to 3)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function provides the link status of an ibaFOB-PlusControl board.

The card number (from 0 to 3) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The board only has one link.

Results

0 Link not active
1 Link OK
2 Link interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

2.9.12	 FobSDLinkStatus,	FobSDexpLinkStatus
FobSDLinkStatus('BoardNo*')

FobSDexpLinkStatus('BoardNo*')

Arguments

'BoardNo*' Board number (0 to 3)

Parameters ending with * are only evaluated once at the start of the acquisition.

136 8.4

Expression builder (virtual signals) ibaPDA

Description
This function returns the link status of an ibaFOB-SD board (PCI) or ibaFOB-SDexp board (PCIe).

The card number (from 0 to 3) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The board only has one link.

Results

0 Link not active
1 Link OK
2 Link interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

2.9.13	 FobTDCLinkStatus,	FobTDCexpLinkStatus
FobTDCLinkStatus('BoardNo*')

FobTDCexpLinkStatus('BoardNo*')

Arguments

'BoardNo*' Board number (0 to 3)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the link status of an ibaFOB-TDC board (PCI) or ibaFOB-TDCexp board
(PCIe).

The board number (from 0 to 3) can be obtained from the 7-digit display on the card or the
graphical presentation in the I/O Manager. The board only has one link.

Results

0 Link not active
1 Link OK
2 Link interrupted

Prerequisites
This function only returns a value if active input modules are installed and configured in the I/O
Manager.

 8.4 137

ibaPDA Expression builder (virtual signals)

2.9.14 ICPSensorStatus
ICPSensorStatus('ModuleNo*','SensorNo*')

Arguments

'Module-
No*'

Module number of a Padu-8-ICP module

'SensorNo*' Sensor number (between 0 and 7)

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function monitors the status of an ICP sensor. The first 'ModuleNo' parameter indicates
the module number of an ibaPADU-8-ICP or ibaMS8xICP-/ IEPE module in the signal tree. The
second parameter, ‘SensorNo’, specifies which sensor should be monitored. The sensor number
goes from 0 to 7.

Results

0 Sensor OK
1 open loop detected

2.9.15 InterruptCycleTime
InterruptCycleTime('Type=0*')

Arguments

'Type*' Optional parameter (default = 0), with which the type of the result value can be
determined.
'Type' = 0 The actual value is returned.
'Type' = 1 The minimum (smallest measured cycle period) is re-

turned.
'Type' = 2 The maximum (largest measured cycle period) is returned.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the Interrupt cycle time in microseconds. The value is not updated with
each Interrupt, but with a lower cycle.

138 8.4

Expression builder (virtual signals) ibaPDA

2.9.16 InterruptTime
InterruptTime('Type=0*')

Arguments

'Type*' Optional parameter (default = 0), with which the type of the result value can be
determined.
'Type' = 0 The actual value is returned.
'Type' = 1 The minimum (smallest duration measured) is returned.
'Type' = 2 The maximum (largest duration measured) is returned.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the Interrupt time (Interrupt duration) in microseconds. The value is not
updated with each Interrupt, but with a lower cycle.

 8.4 139

ibaPDA Expression builder (virtual signals)

2.9.17 LicenseInfo
LicenseInfo('InfoType*')

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function provides information about various properties related to the license container
(dongle or soft license). This information can be used for display and diagnostic purposes.

Specify the information type ('InfoType') you want to receive. This type of information is deter-
mined and output at the start of the acquisition. If you want to receive more information from
the license container then you need to configure the function several times, with a different
type of information each time.

The following information types are supported:

Information types Possible results
0: License container available TRUE = license container available

FALSE = license container missing or defective
1: License time limit in days Value of the remaining lifetime of the license
2: Demo time limit in days Value of the remaining lifetime of the license

for trial periods / demo versions
3: Time limit in seconds before the acquisition
will be stopped because of a license removal

Value of the remaining time which continues
to run the system after the license container
has been removed.

10: License container inserted counter Number of times the license container was
inserted

11: License container removed counter Number of times the license container was
removed

12: License container changed counter Number of times the license container were
changed

Table 9: Information types and possible results of the LicenseInfo function

Application	example
By evaluating information type 0 (availability of the license container), you can monitor whether
or not a dongle is available and if the license container is defective.

You can use this information to trigger an email informing the receiver that the license con-
tainer is no longer available. A system that was lost during operation of the license container is
stopped after a waiting period. This should be avoided, especially in production-relevant iba-
QDR systems.

140 8.4

Expression builder (virtual signals) ibaPDA

2.9.18	 MultiStationStatus
MultiStationStatus()

Description
Returns the current multistation mode.

Results

0 Standalone
1 Slave
2 Master

 8.4 141

ibaPDA Expression builder (virtual signals)

2.9.19 PerformanceCounter
PerformanceCounter("'Category*'","'CounterName*'","'InstanceName*'")

Arguments

'Category*' Text entry from the "Object" column of the Windows Performance Monitor
'Counter-
Name*'

Text entry from the "Performance Indicator" column of the Windows Perfor-
mance Monitor

'Instance-
Name*'

Text entry from the "Instance" column of the Windows Performance Monitor

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The PerformanceCounter function can read, display and record the progress of certain perfor-
mance characteristics of the computer. It returns the value of the performance counter or 0 if
the performance counter does not exist. With the PerformanceCounter function, one perfor-
mance indicator can be read in each case. If you want to display multiple performance indica-
tors, then you have to configure the function repeatedly.

Example
Monitoring system performance

Solution
In order to select the performance characteristics that should be monitored under Windows 7,
click on the Windows icon and search for Computer Management. Then on the left side under
System – Performance – Monitoring tools you need to select the item Performance monitoring.
You can add performance characteristics to be monitored with the green +- symbol in the top
bar.

142 8.4

Expression builder (virtual signals) ibaPDA

Fig. 2: Show new performance characteristics to be monitored

Select the performance indicators and then the instances. In this case, process, ibaPDA, and all
instances are selected, then added and confirmed with <OK>. In the following illustration, the
steps are marked and numbered.

Fig. 3: Selecting the function arguments

 8.4 143

ibaPDA Expression builder (virtual signals)

The allocation to individual function arguments by PerformanceCounter is illustrated in the next
illustration. You must accurately enter the names of the individual performance indicators, ob-
jects and instances for the entry in ibaPDA.

Fig. 4: Name of the function arguments

Example for the entry in ibaPDA for determining the processor time:

144 8.4

Expression builder (virtual signals) ibaPDA

2.9.20 Ping
Ping("'Address'", 'Trigger', ' Timeout=5', ' Size=32')

Arguments

'Address' IP address of the target computer
'Trigger' Trigger signal (rising edge), with which ping is to be sent
'Timeout' Optional parameter (default = 5) for setting the period to wait for a response

before "no response" is shown as a result.
'Size' Optional parameter: Size, in bytes, of the ping request (default = 32)

Description
This function sends a ping request to 'Address' upon a rising edge of 'Trigger'. The function re-
turns the time, in milliseconds, needed before the ping response was received. If there is no re-
sponse within 'Timeout' seconds then -1 is issued. The result is 0 as long as no ping request was
sent. 'Size' determines the size of the ping request in bytes.

The function returns an analog value as the result.

Results

-1 no response to ping request within 'Timeout'
0 no ping request sent
n Response time in ms

2.9.21 TimeSinceLastSync
TimeSinceLastSync()

Description
This function returns the time elapsed in seconds since the last time synchronization. If there
was no time synchronization, the function returns -1.

Tip

Time synchronization is set in the configuration menu of ibaPDA then in the I/O
Manager under the General node. Possible sources for the time synchronization
are DCF77, IEC1131, PTP and HPCi via DGM200P or there is no time synchroniza-
tion set.

 8.4 145

ibaPDA Expression builder (virtual signals)

2.9.22 TimeSyncStatus
TimeSyncStatus('Source*')

Arguments

'Source*' Source for time synchronization
'Source' = -1 last source used for time synchronization
'Source' = 0 DCF77 source 1
'Source' = 1 DCF77 source 2
'Source' = 2 IEC1131
'Source' = 3 DGM200P
'Source' = 4 PTP Slave
'Source' = 5 ibaClock

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
This function returns the status of the selected time synchronization source.

The result can be as follows:

Results

0 Source is inactive
1 Source is active and valid
2 Source is active but not valid

Tip

Time synchronization is set in the configuration menu of ibaPDA, then in the I/O
Manager under the General node.

146 8.4

Expression builder (virtual signals) ibaPDA

2.10	 Filter	functions

2.10.1 BP
BP('Expression','Frenquency1*','Frequency2*')

Arguments

'Expression' Measured value
'Frequency1*' Specification of the lower limit of the frequency band for the filter
'Frequency2*' Specification of the upper limit of the frequency band for the filter

Parameters ending with * are only evaluated once at the start of the acquisition..

Description
The function is a bandpass filter with a frequency band between the frequencies, 'Frequency1'
and 'Frequency2'. The filter is a second-order Butterworth filter.

2.10.2 HP
HP('Expression','Frenquency*')

Arguments

'Expression' Measured value
'Frequency*' Specification of the limit frequency of the filter

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The function is a high-pass filter with the 'Frequency' limit frequency. The filter is a second-or-
der Butterworth filter.

 8.4 147

ibaPDA Expression builder (virtual signals)

2.10.3 LP
LP('Expression','Omega*','Reset=0')

Arguments

'Expression' Measured value
'Omega*' Specification of the angular frequency of the filter, which results in the frequen-

cy of the LP function to frequency = 'Omega'/(2*PI)
'Reset' Optional digital parameter that can be used to deactivate the function. ‘Reset’

can be an expression as well.
'Reset' > 0 Filter is deactivated, input signal is displayed unfiltered
'Reset' = 0 Filter is applied

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The function is a low-pass filter with frequency = 'Omega'/(2*PI) applied to 'Expression'. The
filter is a single-pole filter with a roll-off rate of 20 dB/decade. If the optional 'Reset' parameter
is TRUE then the filter is deactivated and the result is the unfiltered 'Expression' input signal.
'Reset' can also be formulated as an expression.

Examples:

LP([0:0],10) Filter is active ('Reset' omitted).
LP([0:0],10,If([0:0]<0,1,0)) The filter function is only used for positive values.
LP([0:0],10,[3.1]) e.g. with [3.1] = If([0:0]>10, 1, 0)

The filter is deactivated as soon as the expression [3.1]
returns TRUE, i.e. if the expression [0:0] exceeds the limit
value 10.

Example
Applying the filter function to a sine wave with 10 Hz, which is overlaid by a further wave with
50 Hz.

Task	description
The filter function should be applied with the values 5, 10 and 40 for 'Omega'.

148 8.4

Expression builder (virtual signals) ibaPDA

Solution

Blue Original signal of a superimposed
sine wave

Red Filtered signal with 'Omega' = 5

Green Filtered signal with 'Omega' = 10 Yellow Filtered signal with 'Omega' = 40

The lower the value selected for 'Omega', the more the signal is attenuated.

 8.4 149

ibaPDA Expression builder (virtual signals)

2.10.4 EnvelopeSpectral
EnvelopeSpectral('Expression','Frenquency1*','Frequency2*',' Cutoff frequency')

Arguments

'Expression' Measured value
'Frequency1*' Specification of the lower limit of the frequency band for the envelope

calculation
Value may not be less than 10% of the Nyquist frequency.

'Frequency2*' Specification of the upper limit of the frequency band for the envelope
calculation
Value may not be greater than 90% of the Nyquist frequency.

'Cutoff frequency' Optional specification of a limit frequency for the configuration of a low-
pass filter which will be applied to the envelope.

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The function calculates the spectral envelope of 'Expression' with a constant band pass between
the 'Frequency1' and 'Frequency2' frequencies. The smallest bandwidth is 10% of the Nyquist
frequency, i.e., 10% of half the sampling frequency.

The 'Expression' signal is rescanned at the time base of the virtual signal. No anti-aliasing filter is
applied.

2.10.5 Preprocess
Preprocess('Expression', "'Preprocess profile name*'")

Arguments

'Expression' Expression that should be preprocessed
'Preprocess profile
name**'

Name of the preprocess profile or pre-processor

Parameters ending with * are only evaluated once at the start of the acquisition.

Description
The preprocess profile with the name, 'preprocess profile name,' is applied to 'Expression'.

Preprocess profiles can be configured in the pre-processor manager. You can access this manag-
er via the expression editor of an Inspectra expert module.

150 8.4

Expression builder (virtual signals) ibaPDA

2.11	 Retentive	functions
The functions in this group can be used in a virtual retentive module. Functions with a retentive
character always keep their last result value until they are deliberately reset.

When using these functions in a virtual retentive module, the most recently calculated result
value can be saved by stopping the measurement. When restarting the measurement, this value
can be reloaded as the initial value.

Thus, long-term data, such as operating hours counter and media consumption, are not lost by
stopping and starting the measurement.

Functions with this property are:

ì Count, page 93

ì Int, page 34

ì Max, page 51

ì Min, page 57

2.12 Plugins
The ibaPDA plugin system was designed to enable ibaPDA users to create their own features to
perform custom calculations of measurement data with ibaPDA in real time. The functions can
be used in expressions for virtual signals just like built-in functions. They will also appear in the
expression builder (plugins).

To customize functions, you have to create a NET.dll file. This dll-file can be written in any .NET
language (C#, C++, VB.NET, …).

Other	documentation

For a detailed description of the plugin programming and configuration, please
refer to the "ibaPDA Plugin" manual.

151 8.4 151

ibaPDA Support and contact

3 Support and contact
Support

Phone: +49 911 97282-14

Fax: +49 911 97282-33

Email: support@iba-ag.com

Note

If you need support for software products, please state the number of the licen-
se container. For hardware products, please have the serial number of the device
ready.

Contact

Headquarters

iba AG
Koenigswarterstrasse 44
90762 Fuerth
Germany

Phone: +49 911 97282-0

Fax: +49 911 97282-33

Email: iba@iba-ag.com

Mailing address

iba AG
Postbox 1828
D-90708 Fuerth, Germany

Delivery address

iba AG
Gebhardtstrasse 10
90762 Fuerth, Germany

Regional and Worldwide

For contact data of your regional iba office or representative
please refer to our web site:

www.iba-ag.com

	1 About this documentation
	1.1 Target group and previous knowledge
	1.2 Notations
	1.3 Used symbols
	1.4 Documentation structure

	2 Expression builder (virtual signals)
	2.1 Encryption of certain text arguments
	2.2 Logical functions
	2.2.1 Comparison functions >, >=, <, <=, <>, =
	2.2.2 Boolean functions
	2.2.3 Bitwise logical combinations
	2.2.4 ExtendPulse
	2.2.5 F_TRIG
	2.2.6 FALSE
	2.2.7 If
	2.2.8 OneShot
	2.2.9 R_TRIG
	2.2.10 SetReset
	2.2.11 Switch
	2.2.12 TOF
	2.2.13 Toggle
	2.2.14 TON
	2.2.15 TP
	2.2.16 TRUE

	2.3 Mathematical functions
	2.3.1 Fundamental arithmetic operations +, -, *, /
	2.3.2 Abs
	2.3.3 Add
	2.3.4 Ceiling
	2.3.5 Diff
	2.3.6 Eff
	2.3.7 Exp
	2.3.8 Floor
	2.3.9 Int
	2.3.10 Log
	2.3.11 Log10
	2.3.12 Mod
	2.3.13 Pow
	2.3.14 Round
	2.3.15 Sqrt
	2.3.16 Truncate

	2.4 Trigonometric functions
	2.5 Statistical functions
	2.5.1 Avg
	2.5.2 Avg2
	2.5.3 AvgInTime
	2.5.4 KurtosisInTime
	2.5.5 MAvg
	2.5.6 MAvgOnTrigger
	2.5.7 Max
	2.5.8 Max2
	2.5.9 MaxInTime
	2.5.10 Median2
	2.5.11 MedianInTime
	2.5.12 Min
	2.5.13 Min2
	2.5.14 MinInTime
	2.5.15 MKurtosis
	2.5.16 MMax
	2.5.17 MMedian
	2.5.18 MMin
	2.5.19 MSkewness
	2.5.20 MStdDev
	2.5.21 SkewnessInTime
	2.5.22 StdDev
	2.5.23 StdDev2
	2.5.24 StddevInTime

	2.6 Trigger functions
	2.6.1 Periodic trigger
	2.6.2 TriggerChangeRate
	2.6.3 TriggerConstant
	2.6.4 TriggerEdge
	2.6.5 TriggerLevel
	2.6.6 TriggerHarmonicLevel

	2.7 Text functions
	2.7.1 CharValue
	2.7.2 CompareText
	2.7.3 ConcatText
	2.7.4 ConvertFromText
	2.7.5 ConvertToText
	2.7.6 CountText
	2.7.7 DeleteText
	2.7.8 FindText
	2.7.9 InsertText
	2.7.10 MidText
	2.7.11 ReplaceText
	2.7.12 TextLength
	2.7.13 TrimText

	2.8 Miscellaneous functions
	2.8.1 ClientInfo
	2.8.2 ClientInfoText
	2.8.3 Count
	2.8.4 CountUpDown
	2.8.5 Delay
	2.8.6 DelayLengthL
	2.8.7 DelayLengthV
	2.8.8 DWORD
	2.8.9 ElapsedTime
	2.8.10 ExecuteCommand
	2.8.11 GenerateSignal
	2.8.12 GenerateText
	2.8.13 GetFloatBit
	2.8.14 GetIntBit
	2.8.15 GetSignalMetaData
	2.8.16 GetSystemTime
	2.8.17 GetSystemTimeAsText
	2.8.18 GetWeekOfYear
	2.8.19 LimitAlarm
	2.8.20 ModuleSignalCount
	2.8.21 PulseFreq
	2.8.22 RestartAcquisition
	2.8.23 SampleAndHold
	2.8.24 SampleOnce
	2.8.25 Sign
	2.8.26 T
	2.8.27 VarDelay
	2.8.28 WindowAlarm

	2.9 Diagnosis functions
	2.9.1 CameraStatus
	2.9.2 DataStoreInfo
	2.9.3 DataStoreInfoDB, ...Influx, ...Kafka, ...MindSphere, ...MQTT
	2.9.4 DataStoreInfoHD
	2.9.5 DongleInfo
	2.9.6 FobDLinkStatus
	2.9.7 FobFastLinkStatus
	2.9.8 FobFlexDeviceStatus
	2.9.9 FobFLinkStatus
	2.9.10 FobMLinkStatus
	2.9.11 FobPlusControlLinkStatus
	2.9.12 FobSDLinkStatus, FobSDexpLinkStatus
	2.9.13 FobTDCLinkStatus, FobTDCexpLinkStatus
	2.9.14 ICPSensorStatus
	2.9.15 InterruptCycleTime
	2.9.16 InterruptTime
	2.9.17 LicenseInfo
	2.9.18 MultiStationStatus
	2.9.19 PerformanceCounter
	2.9.20 Ping
	2.9.21 TimeSinceLastSync
	2.9.22 TimeSyncStatus

	2.10 Filter functions
	2.10.1 BP
	2.10.2 HP
	2.10.3 LP
	2.10.4 EnvelopeSpectral
	2.10.5 Preprocess

	2.11 Retentive functions
	2.12 Plugins

	3 Support and contact

